You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_davinci_model.cc 9.1 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <memory>
  17. #include "hybrid/hybrid_davinci_model.h"
  18. #include "hybrid/model/hybrid_model.h"
  19. #include "hybrid/executor/hybrid_model_async_executor.h"
  20. #include "hybrid/node_executor/node_executor.h"
  21. #include "graph/manager/graph_manager_utils.h"
  22. namespace ge {
  23. namespace hybrid {
  24. class HybridDavinciModel::Impl {
  25. public:
  26. explicit Impl(GeRootModelPtr ge_model) : model_(std::move(ge_model)), executor_(&model_) {
  27. }
  28. ~Impl() {
  29. NodeExecutorManager::GetInstance().FinalizeExecutors();
  30. }
  31. Status Init() {
  32. GE_CHK_STATUS_RET(NodeExecutorManager::GetInstance().EnsureInitialized(),
  33. "[Initialize][NodeExecutorManager] failed");
  34. GE_CHK_STATUS_RET(model_.Init(), "[Init][HybridModel] failed.")
  35. GE_CHK_STATUS_RET(executor_.Init(), "[Init][HybridModelAsyncExecutor] failed.")
  36. return SUCCESS;
  37. }
  38. Status Execute(const std::vector<DataBuffer> &inputs,
  39. const std::vector<GeTensorDesc> &input_desc,
  40. std::vector<DataBuffer> &outputs,
  41. std::vector<GeTensorDesc> &output_desc,
  42. rtStream_t stream) {
  43. return executor_.Execute(inputs, input_desc, outputs, output_desc);
  44. }
  45. Status Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  46. return executor_.Execute(inputs, outputs);
  47. }
  48. Status ModelRunStart() {
  49. return executor_.Start(listener_);
  50. }
  51. Status ModelRunStop() {
  52. return executor_.Stop();
  53. }
  54. Status EnqueueData(const std::shared_ptr<InputDataWrapper> &data) {
  55. return executor_.EnqueueData(data);
  56. }
  57. void SetListener(const shared_ptr<ModelListener> &listener) {
  58. listener_ = listener;
  59. }
  60. void SetModelId(uint32_t model_id) {
  61. executor_.SetModelId(model_id);
  62. model_.SetModelId(model_id);
  63. }
  64. void SetDeviceId(uint32_t device_id) {
  65. model_.SetDeviceId(device_id);
  66. executor_.SetDeviceId(device_id);
  67. }
  68. void SetOmName(const string &model_name) {
  69. model_.SetOmName(model_name);
  70. }
  71. uint32_t GetDeviceId() {
  72. return model_.GetDeviceId();
  73. }
  74. const GraphExecutionContext *GeContext() { return executor_.GeContext(); }
  75. uint64_t GetSessionId() {
  76. return model_.GetSessionId();
  77. }
  78. Status GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type) {
  79. return model_.GetDynamicBatchInfo(batch_info, dynamic_type);
  80. }
  81. void GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order) {
  82. model_.GetUserDesignateShapeOrder(user_input_shape_order);
  83. }
  84. void GetModelAttr(std::vector<std::string> &dynamic_output_shape_info) {
  85. model_.GetModelAttr(dynamic_output_shape_info);
  86. }
  87. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc,
  88. vector<InputOutputDescInfo> &output_desc,
  89. std::vector<uint32_t> &input_formats,
  90. std::vector<uint32_t> &output_formats) {
  91. return model_.GetInputOutputDescInfo(input_desc, output_desc, input_formats, output_formats);
  92. }
  93. void SetModelDescVersion(bool is_new_model_desc) {
  94. model_.SetModelDescVersion(is_new_model_desc);
  95. }
  96. uint32_t GetDataInputerSize() { return executor_.GetDataInputerSize(); }
  97. bool GetRunningFlag() const { return executor_.GetRunningFlag(); }
  98. Status SetRunAsyncListenerCallback(const RunAsyncCallback &callback) {
  99. auto listener = dynamic_cast<RunAsyncListener *>(listener_.get());
  100. GE_CHECK_NOTNULL(listener);
  101. listener->SetCallback(callback);
  102. return SUCCESS;
  103. }
  104. Status GetOpAttr(const std::string &op_name, const std::string &attr_name,
  105. std::string &attr_value) {
  106. return model_.GetOpAttr(op_name, attr_name, attr_value);
  107. }
  108. private:
  109. std::shared_ptr<ModelListener> listener_;
  110. HybridModel model_;
  111. HybridModelAsyncExecutor executor_;
  112. };
  113. HybridDavinciModel::~HybridDavinciModel() {
  114. delete impl_;
  115. }
  116. std::unique_ptr<HybridDavinciModel> HybridDavinciModel::Create(const GeRootModelPtr &ge_root_model) {
  117. auto instance = std::unique_ptr<HybridDavinciModel>(new (std::nothrow)HybridDavinciModel());
  118. if (instance != nullptr) {
  119. instance->impl_ = new (std::nothrow) HybridDavinciModel::Impl(ge_root_model);
  120. if (instance->impl_ != nullptr) {
  121. return instance;
  122. }
  123. }
  124. return nullptr;
  125. }
  126. Status HybridDavinciModel::Init() {
  127. GE_CHECK_NOTNULL(impl_);
  128. return impl_->Init();
  129. }
  130. Status HybridDavinciModel::Execute(const std::vector<DataBuffer> &inputs,
  131. const std::vector<GeTensorDesc> &input_desc,
  132. std::vector<DataBuffer> &outputs,
  133. std::vector<GeTensorDesc> &output_desc, rtStream_t stream) {
  134. GE_CHECK_NOTNULL(impl_);
  135. return impl_->Execute(inputs, input_desc, outputs, output_desc, stream);
  136. }
  137. Status HybridDavinciModel::Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  138. GE_CHECK_NOTNULL(impl_);
  139. return impl_->Execute(inputs, outputs);
  140. }
  141. Status HybridDavinciModel::ModelRunStart() {
  142. GE_CHECK_NOTNULL(impl_);
  143. return impl_->ModelRunStart();
  144. }
  145. Status HybridDavinciModel::ModelRunStop() {
  146. GE_CHECK_NOTNULL(impl_);
  147. return impl_->ModelRunStop();
  148. }
  149. Status HybridDavinciModel::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
  150. GE_CHECK_NOTNULL(impl_);
  151. return impl_->EnqueueData(data);
  152. }
  153. void HybridDavinciModel::SetListener(const shared_ptr<ModelListener> &listener) {
  154. if (impl_ != nullptr) {
  155. impl_->SetListener(listener);
  156. }
  157. }
  158. void HybridDavinciModel::SetModelId(uint32_t model_id) {
  159. if (impl_ != nullptr) {
  160. impl_->SetModelId(model_id);
  161. }
  162. }
  163. void HybridDavinciModel::SetDeviceId(uint32_t device_id) {
  164. if (impl_ != nullptr) {
  165. impl_->SetDeviceId(device_id);
  166. }
  167. }
  168. void HybridDavinciModel::SetOmName(const string &om_name) {
  169. if (impl_ != nullptr) {
  170. impl_->SetOmName(om_name);
  171. }
  172. }
  173. uint32_t HybridDavinciModel::GetDeviceId() const {
  174. GE_CHECK_NOTNULL(impl_);
  175. return impl_->GetDeviceId();
  176. }
  177. Status HybridDavinciModel::GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type) {
  178. GE_CHECK_NOTNULL(impl_);
  179. return impl_->GetDynamicBatchInfo(batch_info, dynamic_type);
  180. }
  181. void HybridDavinciModel::GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order) {
  182. if (impl_ != nullptr) {
  183. impl_->GetUserDesignateShapeOrder(user_input_shape_order);
  184. }
  185. }
  186. void HybridDavinciModel::GetModelAttr(std::vector<std::string> &dynamic_output_shape_info) {
  187. if (impl_ != nullptr) {
  188. impl_->GetModelAttr(dynamic_output_shape_info);
  189. }
  190. }
  191. Status HybridDavinciModel::GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc,
  192. vector<InputOutputDescInfo> &output_desc,
  193. std::vector<uint32_t> &input_formats,
  194. std::vector<uint32_t> &output_formats) {
  195. GE_CHECK_NOTNULL(impl_);
  196. return impl_->GetInputOutputDescInfo(input_desc, output_desc, input_formats, output_formats);
  197. }
  198. void HybridDavinciModel::SetModelDescVersion(bool is_new_model_desc) {
  199. if (impl_ != nullptr) {
  200. impl_->SetModelDescVersion(is_new_model_desc);
  201. }
  202. }
  203. uint64_t HybridDavinciModel::GetSessionId() {
  204. GE_CHECK_NOTNULL(impl_);
  205. return impl_->GetSessionId();
  206. }
  207. uint32_t HybridDavinciModel::GetDataInputerSize() {
  208. GE_CHECK_NOTNULL(impl_);
  209. return impl_->GetDataInputerSize();
  210. }
  211. bool HybridDavinciModel::GetRunningFlag() const { return impl_->GetRunningFlag(); }
  212. Status HybridDavinciModel::SetRunAsyncListenerCallback(const RunAsyncCallback &callback) {
  213. return impl_->SetRunAsyncListenerCallback(callback);
  214. }
  215. bool HybridDavinciModel::GetOpDescInfo(uint32_t stream_id, uint32_t task_id, OpDescInfo &op_desc_info) const {
  216. if (impl_ == nullptr) {
  217. return false;
  218. }
  219. auto context = impl_->GeContext();
  220. GE_CHECK_NOTNULL(context);
  221. bool ret = context->exception_dumper.GetOpDescInfo(stream_id, task_id, op_desc_info);
  222. if (!ret) {
  223. for (const auto &iter : context->davinci_model) {
  224. if (iter->GetOpDescInfo(stream_id, task_id, op_desc_info)) {
  225. return true;
  226. }
  227. }
  228. }
  229. return ret;
  230. }
  231. Status HybridDavinciModel::GetOpAttr(const std::string &op_name, const std::string &attr_name,
  232. std::string &attr_value) const {
  233. GE_CHECK_NOTNULL(impl_);
  234. return impl_->GetOpAttr(op_name, attr_name, attr_value);
  235. }
  236. } // namespace hybrid
  237. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示