You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

host_cpu_engine_unittest.cc 3.2 kB

4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. /**
  2. * Copyright 2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define protected public
  18. #define private public
  19. #include "ge_local_engine/engine/host_cpu_engine.h"
  20. #undef private
  21. #undef protected
  22. namespace ge {
  23. class UTEST_host_cpu_engine : public testing::Test {
  24. protected:
  25. void SetUp() {}
  26. void TearDown() {}
  27. };
  28. TEST_F(UTEST_host_cpu_engine, PrepareOutputs_success) {
  29. OpDescPtr op_desc = std::make_shared<OpDesc>("name", "type");
  30. op_desc->AddOutputDesc("1", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_BOOL));
  31. op_desc->AddOutputDesc("2", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT8));
  32. op_desc->AddOutputDesc("3", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT16));
  33. op_desc->AddOutputDesc("4", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT32));
  34. op_desc->AddOutputDesc("5", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT64));
  35. op_desc->AddOutputDesc("6", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_UINT8));
  36. op_desc->AddOutputDesc("7", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_UINT16));
  37. op_desc->AddOutputDesc("8", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_UINT32));
  38. op_desc->AddOutputDesc("9", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_UINT64));
  39. op_desc->AddOutputDesc("10", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_FLOAT16));
  40. op_desc->AddOutputDesc("11", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_FLOAT));
  41. op_desc->AddOutputDesc("12", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_DOUBLE));
  42. op_desc->AddOutputDesc("13", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT4));
  43. vector<GeTensorPtr> outputs;
  44. GeTensorPtr value = std::make_shared<GeTensor>();
  45. for (int32_t i = 0; i < 13; i++) {
  46. outputs.push_back(value);
  47. }
  48. map<std::string, Tensor> named_outputs;
  49. auto ret = HostCpuEngine::GetInstance().PrepareOutputs(op_desc, outputs, named_outputs);
  50. EXPECT_EQ(ret, SUCCESS);
  51. EXPECT_EQ(named_outputs.size(), 13);
  52. }
  53. TEST_F(UTEST_host_cpu_engine, PrepareOutputs_need_create_success) {
  54. OpDescPtr op_desc = std::make_shared<OpDesc>("name", "type");
  55. op_desc->AddOutputDesc("output_1", GeTensorDesc(GeShape({2, 2}), FORMAT_NCHW, DT_INT32));
  56. vector<GeTensorPtr> outputs;
  57. map<std::string, Tensor> named_outputs;
  58. auto ret = HostCpuEngine::GetInstance().PrepareOutputs(op_desc, outputs, named_outputs);
  59. EXPECT_EQ(ret, SUCCESS);
  60. EXPECT_EQ(named_outputs.size(), 1);
  61. EXPECT_EQ(named_outputs["output_1"].GetSize(), 16);
  62. EXPECT_EQ(named_outputs["output_1"].GetTensorDesc().GetDataType(), DT_INT32);
  63. EXPECT_EQ(named_outputs["output_1"].GetTensorDesc().GetShape().GetShapeSize(), 4);
  64. }
  65. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示