You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

encoding_ops.h 1.5 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. /*
  2. * Copyright (c) Huawei Technologies Co., Ltd 2022-2022. All rights reserved.
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file encoding_ops.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_ENCODING_OPS_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_ENCODING_OPS_H_
  22. #include "graph/operator_reg.h"
  23. #include "graph/operator.h"
  24. namespace ge {
  25. /**
  26. * @brief An op to decode indices for LDPC code. \n
  27. * @par Inputs:
  28. * @li valid_num: an int32 tensor indicates index limit for each line.
  29. * @li matrix_info: an int32 2D-tensor store the block indices info of connection H matrix. \n
  30. * @par Outputs:
  31. * indices: an int32 2D-tensor store the concrete indices value.
  32. *
  33. * @par Restrictions:
  34. * Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  35. */
  36. REG_OP(LDPCDecode)
  37. .INPUT(valid_num, TensorType({DT_INT32}))
  38. .INPUT(matrix_info, TensorType({DT_INT32}))
  39. .OUTPUT(indices, TensorType({DT_INT32}))
  40. .OP_END_FACTORY_REG(LDPCDecode)
  41. } // namespace ge
  42. #endif // OPS_BUILT_IN_OP_PROTO_INC_ENCODING_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示