You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_async_executor.cc 23 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/hybrid_model_async_executor.h"
  17. #include "graph/load/model_manager/model_utils.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/type_utils.h"
  20. #include "graph/ge_context.h"
  21. #include "omm/csa_interact.h"
  22. namespace ge {
  23. namespace hybrid {
  24. namespace {
  25. const int kDataOutputIndex = 0;
  26. const size_t kMinimumPiplineStages = 2;
  27. const int kDefaultLoopCount = 10;
  28. }
  29. HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
  30. : model_(model), run_flag_(false), data_dumper_(nullptr) {
  31. }
  32. HybridModelAsyncExecutor::~HybridModelAsyncExecutor() {
  33. if (stream_ != nullptr) {
  34. GE_CHK_RT(rtStreamDestroy(stream_));
  35. }
  36. }
  37. void HybridModelAsyncExecutor::SetDeviceId(uint32_t device_id) {
  38. device_id_ = device_id;
  39. }
  40. void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) {
  41. model_id_ = model_id;
  42. }
  43. Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
  44. GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL,
  45. "Data queue is full, please call again later, model_id %u ", model_id_);
  46. GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index);
  47. return SUCCESS;
  48. }
  49. Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &listener) {
  50. GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr);
  51. std::lock_guard<std::mutex> lk(mu_);
  52. GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started.");
  53. run_flag_ = true;
  54. listener_ = listener;
  55. future_ = std::async(std::launch::async, [&]() -> Status {
  56. GetThreadLocalContext() = *executor_->GetContext()->ge_context;
  57. GetContext().SetSessionId(executor_->GetContext()->session_id);
  58. GetContext().SetContextId(executor_->GetContext()->context_id);
  59. return RunInternal();
  60. });
  61. GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start.");
  62. GELOGD("HybridModelExecutor::Start successfully");
  63. return SUCCESS;
  64. }
  65. Status HybridModelAsyncExecutor::Stop() {
  66. std::lock_guard<std::mutex> lk(mu_);
  67. run_flag_ = false;
  68. data_inputer_->Stop();
  69. Status ret = SUCCESS;
  70. if (future_.valid()) {
  71. ret = future_.get();
  72. }
  73. if (is_op_debug_reg_) {
  74. op_debug_register_.UnregisterDebugForStream(stream_);
  75. }
  76. if (stream_ != nullptr) {
  77. GE_CHK_RT(rtStreamDestroy(stream_));
  78. stream_ = nullptr;
  79. }
  80. return ret;
  81. }
  82. Status HybridModelAsyncExecutor::Init() {
  83. data_inputer_ = std::unique_ptr<DataInputer>(new(std::nothrow) DataInputer());
  84. GE_CHECK_NOTNULL(data_inputer_);
  85. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  86. executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
  87. GE_CHECK_NOTNULL(executor_);
  88. GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine");
  89. GE_CHK_STATUS_RET(DumpOpDebug(), "Dump op debug failed in hybrid engine");
  90. GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
  91. if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
  92. pipe_executor_ =
  93. std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
  94. GE_CHECK_NOTNULL(pipe_executor_);
  95. GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine");
  96. }
  97. GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors");
  98. return SUCCESS;
  99. }
  100. Status HybridModelAsyncExecutor::PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  101. GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data");
  102. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End");
  103. GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model");
  104. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End");
  105. return SUCCESS;
  106. }
  107. Status HybridModelAsyncExecutor::RunInternal() {
  108. auto device_id = static_cast<int32_t>(device_id_);
  109. GELOGD("Hybrid model start. model_id = %u, device_id = %u", model_id_, device_id_);
  110. GE_CHK_RT_RET(rtSetDevice(device_id));
  111. // DeviceReset before thread run finished!
  112. GE_MAKE_GUARD(not_used_var, [&] { GE_CHK_RT(rtDeviceReset(device_id)); });
  113. while (run_flag_) {
  114. // Model has not indeedly started running before received data
  115. SetRunningFlag(false);
  116. std::shared_ptr<InputDataWrapper> data_wrapper;
  117. Status ret = data_inputer_->Pop(data_wrapper);
  118. // Model indeedly start running
  119. SetRunningFlag(true);
  120. GE_IF_BOOL_EXEC(data_wrapper == nullptr || ret != SUCCESS, GELOGI("data_wrapper is null!, ret = %u", ret);
  121. continue);
  122. GELOGI("Getting the input data, model_id:%u", model_id_);
  123. GE_IF_BOOL_EXEC(!run_flag_, break);
  124. InputData current_data = data_wrapper->GetInput();
  125. GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index);
  126. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_);
  127. HybridModelExecutor::ExecuteArgs args;
  128. ret = PreRun(current_data, args);
  129. GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
  130. ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  131. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  132. continue, "PreRun failed."); // [No need to check value]
  133. if (pipe_executor_ != nullptr) {
  134. GELOGI("HybridModel will execute in pipeline mode");
  135. auto iter_per_run = std::getenv("ITER_NUM");
  136. if (iter_per_run) {
  137. args.num_loops = static_cast<int>(strtol(iter_per_run, nullptr, kDefaultLoopCount));
  138. }
  139. ret = pipe_executor_->Execute(args);
  140. } else {
  141. GELOGI("HybridModel will execute in singleline mode");
  142. ge::GetContext().SetSessionId(executor_->GetContext()->session_id);
  143. ge::GetContext().SetContextId(executor_->GetContext()->context_id);
  144. ret = executor_->Execute(args);
  145. }
  146. ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  147. if (ret != SUCCESS) {
  148. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC);
  149. continue;
  150. }
  151. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] End", iterator_count_);
  152. iterator_count_++;
  153. SetRunningFlag(false);
  154. GELOGI("run iterator count is %lu, model_id:%u", iterator_count_, model_id_);
  155. }
  156. CsaInteract::GetInstance().WriteInternalErrorCode();
  157. GELOGI("Model run end, model id:%u", model_id_);
  158. return SUCCESS;
  159. }
  160. Status HybridModelAsyncExecutor::HandleResult(Status exec_ret,
  161. uint32_t data_id,
  162. HybridModelExecutor::ExecuteArgs &args,
  163. OutputData *output_data) {
  164. GELOGD("Start to handle result. model id = %u, data index = %u, execution ret = %u", model_id_, data_id, exec_ret);
  165. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  166. if (args.is_eos) {
  167. GELOGI("End of sequence, model id = %u", model_id_);
  168. GE_CHK_STATUS_RET_NOLOG(OnComputeDone(data_id, END_OF_SEQUENCE, output_tensor_info_list));
  169. return SUCCESS;
  170. }
  171. if (exec_ret != SUCCESS) {
  172. GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_);
  173. return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  174. }
  175. GE_CHECK_NOTNULL(output_data);
  176. auto ret = CopyOutputs(args, output_data, output_tensor_info_list);
  177. if (ret != SUCCESS) {
  178. OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  179. return INTERNAL_ERROR;
  180. }
  181. GELOGD("Executed graph successfully, model id = %u, data_index = %u", model_id_, data_id);
  182. return OnComputeDone(data_id, SUCCESS, output_tensor_info_list);
  183. }
  184. Status HybridModelAsyncExecutor::SyncVarData() {
  185. GELOGI("Sync var data, model id:%u", model_id_);
  186. TensorValue *global_step_var = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  187. if (global_step_var != nullptr) {
  188. std::vector<uint64_t> v_step;
  189. v_step.push_back(iterator_count_);
  190. GE_CHK_RT_RET(rtMemcpy(global_step_var->MutableData(),
  191. global_step_var->GetSize(),
  192. v_step.data(),
  193. v_step.size() * sizeof(uint64_t),
  194. RT_MEMCPY_HOST_TO_DEVICE));
  195. } else {
  196. GELOGD("No GLOBAL_STEP variable was found.");
  197. }
  198. return SUCCESS;
  199. }
  200. Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  201. if (current_data.blobs.size() < input_tensor_desc_.size()) {
  202. GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu",
  203. input_tensor_desc_.size(), current_data.blobs.size());
  204. return PARAM_INVALID;
  205. }
  206. auto allocator = NpuMemoryAllocator::GetAllocator(device_id_);
  207. GE_CHECK_NOTNULL(allocator);
  208. args.input_desc.resize(input_tensor_desc_.size());
  209. const std::vector<DataBuffer> &blobs = current_data.blobs;
  210. for (size_t input_index = 0; input_index < input_tensor_desc_.size(); ++input_index) {
  211. auto tensor_size = input_sizes_[input_index];
  212. if (is_input_dynamic_[input_index]) {
  213. if (input_index >= current_data.shapes.size()) {
  214. GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu",
  215. input_index, current_data.shapes.size());
  216. return PARAM_INVALID;
  217. }
  218. auto &tensor_desc = input_tensor_desc_[input_index];
  219. GeShape shape(current_data.shapes[input_index]);
  220. std::vector<std::pair<int64_t, int64_t>> range;
  221. auto range_ret = tensor_desc->GetShapeRange(range);
  222. GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR,
  223. "Get shape range failed, ret=%u.", range_ret);
  224. for (size_t k = 0; k < range.size(); ++k) {
  225. if (k >= shape.GetDimNum()) {
  226. break;
  227. }
  228. // range[k].second can be -1
  229. if (shape.GetDim(k) < range[k].first || (range[k].second >= 0 && shape.GetDim(k) > range[k].second)) {
  230. GELOGE(PARAM_INVALID, "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
  231. input_index, k, shape.GetDim(k), range[k].first, range[k].second);
  232. return PARAM_INVALID;
  233. }
  234. }
  235. tensor_desc->SetShape(shape);
  236. args.input_desc[input_index] = tensor_desc;
  237. GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str());
  238. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size),
  239. "Failed to calc tensor size, index = %zu, shape = [%s]",
  240. input_index,
  241. tensor_desc->GetShape().ToString().c_str());
  242. GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size);
  243. }
  244. GE_CHECK_GE(tensor_size, 0);
  245. AllocationAttr attr;
  246. if (GetContext().GetHostExecFlag()) {
  247. attr.SetMemType(HOST_DDR);
  248. }
  249. auto tensor_buffer = TensorBuffer::Create(allocator, tensor_size, &attr);
  250. GE_CHECK_NOTNULL(tensor_buffer);
  251. args.inputs.emplace_back(std::shared_ptr<TensorBuffer>(tensor_buffer.release()));
  252. GELOGD("To copy input data for input[%zu]", input_index);
  253. const DataBuffer &data_buf = blobs[input_index];
  254. auto mem_size = static_cast<uint64_t>(tensor_size);
  255. GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length,
  256. PARAM_INVALID,
  257. "input data size(%lu) does not match model required size(%lu), ret failed.",
  258. data_buf.length,
  259. mem_size);
  260. GELOGI("[IMAS]CopyPlainData memcpy graph_%u type[F] output[%zu] memaddr[%p] mem_size[%zu] datasize[%lu]",
  261. model_->root_runtime_param_.graph_id,
  262. input_index,
  263. args.inputs[input_index].GetData(),
  264. mem_size,
  265. data_buf.length);
  266. GE_CHK_RT_RET(rtMemcpy(args.inputs[input_index].MutableData(),
  267. mem_size,
  268. data_buf.data,
  269. data_buf.length,
  270. RT_MEMCPY_HOST_TO_DEVICE));
  271. }
  272. return SUCCESS;
  273. }
  274. Status HybridModelAsyncExecutor::InitInputDesc() {
  275. int input_index = 0;
  276. for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) {
  277. GELOGD("Init input[%u], node = %s, is_dynamic = %d",
  278. input_index,
  279. input_node->NodeName().c_str(),
  280. input_node->is_dynamic);
  281. auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex);
  282. GE_CHECK_NOTNULL(output_desc);
  283. int64_t tensor_size = -1;
  284. if (!input_node->is_dynamic) {
  285. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*output_desc, tensor_size),
  286. "Failed to get size from %s",
  287. input_node->NodeName().c_str());
  288. if (tensor_size == 0) {
  289. GELOGW("[%s] Tensor size == 0", input_node->NodeName().c_str());
  290. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*output_desc, tensor_size),
  291. "Failed to calc tensor size");
  292. GELOGD("[%s] Tensor size updated to %ld", input_node->NodeName().c_str(), tensor_size);
  293. }
  294. }
  295. input_sizes_.emplace(input_index, tensor_size);
  296. input_tensor_desc_.emplace(input_index, output_desc);
  297. is_input_dynamic_.push_back(input_node->is_dynamic);
  298. input_index += 1;
  299. }
  300. return SUCCESS;
  301. }
  302. Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t result_code,
  303. std::vector<ge::OutputTensorInfo> &outputs) {
  304. GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code);
  305. if (listener_ != nullptr) {
  306. GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs),
  307. "OnComputeDone failed");
  308. }
  309. return result_code;
  310. }
  311. Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &args,
  312. OutputData *output_data,
  313. std::vector<ge::OutputTensorInfo> &outputs) {
  314. // copy output data from op to designated position
  315. std::vector<ConstGeTensorDescPtr> &output_tensor_desc_list = args.output_desc;
  316. std::vector<TensorValue> &output_tensors = args.outputs;
  317. if (output_tensor_desc_list.size() != output_tensors.size()) {
  318. GELOGE(INTERNAL_ERROR,
  319. "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu",
  320. output_tensor_desc_list.size(),
  321. output_tensors.size());
  322. return INTERNAL_ERROR;
  323. }
  324. GELOGD("Number of outputs = %zu", output_tensor_desc_list.size());
  325. for (size_t i = 0; i < output_tensors.size(); ++i) {
  326. GELOGD("Start to process output[%zu]", i);
  327. auto &output_tensor = output_tensors[i];
  328. auto &tensor_desc = output_tensor_desc_list.at(i);
  329. GE_CHECK_NOTNULL(tensor_desc);
  330. int64_t output_size = -1;
  331. GE_CHK_GRAPH_STATUS_RET(TensorUtils::CalcTensorMemSize(tensor_desc->GetShape(),
  332. tensor_desc->GetFormat(),
  333. tensor_desc->GetDataType(),
  334. output_size),
  335. "Failed to calc tensor size for output[%zu]. shape = [%s], type = %s, format = %s",
  336. i,
  337. tensor_desc->GetShape().ToString().c_str(),
  338. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  339. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str());
  340. GELOGD("Got tensor size for output[%zu] successfully. shape = [%s], type = %s, format = %s, size = %ld",
  341. i,
  342. tensor_desc->GetShape().ToString().c_str(),
  343. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  344. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str(),
  345. output_size);
  346. GE_CHECK_GE(output_size, 0);
  347. GE_CHECK_LE(output_size, UINT32_MAX);
  348. if (output_tensor.GetSize() < static_cast<size_t>(output_size)) {
  349. GELOGE(INTERNAL_ERROR,
  350. "output[%zu] tensor size(%zu) is not enough for output shape [%s]",
  351. i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
  352. return INTERNAL_ERROR;
  353. }
  354. ge::OutputTensorInfo output;
  355. output.data_type = static_cast<uint32_t>(tensor_desc->GetDataType());
  356. output.dims = tensor_desc->GetShape().GetDims();
  357. output.length = output_size;
  358. if (output_size > 0) {
  359. std::unique_ptr<uint8_t[]> data_buf(new(std::nothrow) uint8_t[output_size]);
  360. GE_CHECK_NOTNULL(data_buf);
  361. GE_CHK_RT_RET(rtMemcpy(data_buf.get(),
  362. output_size,
  363. output_tensor.GetData(),
  364. output_size,
  365. RT_MEMCPY_DEVICE_TO_HOST));
  366. output.data = std::move(data_buf);
  367. output_data->blobs.emplace_back(data_buf.get(), static_cast<uint32_t>(output_size), false);
  368. } else {
  369. GELOGW("Output[%zu] is empty. shape = [%s]", i, tensor_desc->GetShape().ToString().c_str());
  370. output.data = nullptr;
  371. output_data->blobs.emplace_back(nullptr, 0U, false);
  372. }
  373. outputs.emplace_back(std::move(output));
  374. GELOGD("Output[%zu] added, type = %s, shape = [%s], size = %ld",
  375. i,
  376. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  377. tensor_desc->GetShape().ToString().c_str(),
  378. output_size);
  379. }
  380. return SUCCESS;
  381. }
  382. Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
  383. const std::vector<GeTensorDesc> &input_desc,
  384. std::vector<DataBuffer> &outputs,
  385. std::vector<GeTensorDesc> &output_desc) {
  386. GELOGI("Start to execute model.");
  387. HybridModelExecutor::ExecuteArgs args;
  388. args.inputs.resize(inputs.size());
  389. for (size_t i = 0; i < inputs.size(); ++i) {
  390. TensorValue tensor_value(inputs[i].data, inputs[i].length);
  391. args.inputs[i] = tensor_value;
  392. }
  393. for (size_t i = 0; i < outputs.size(); ++i) {
  394. args.outputs.emplace_back(TensorValue(outputs[i].data, outputs[i].length));
  395. }
  396. // usr must designate input tensorDesc when input shape is dynamic in inference
  397. for (size_t i = 0; i < input_desc.size(); ++i) {
  398. ConstGeTensorDescPtr tensor_desc_ptr = MakeShared<GeTensorDesc>(input_desc[i]);
  399. args.input_desc.emplace_back(tensor_desc_ptr);
  400. }
  401. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  402. for (const auto &output_tensor_desc : args.output_desc) {
  403. output_desc.emplace_back(*output_tensor_desc);
  404. }
  405. return SUCCESS;
  406. }
  407. Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  408. GELOGD("Start to execute model.");
  409. // prepare inputs
  410. InputData input_data;
  411. for (auto &tensor : inputs) {
  412. DataBuffer buffer;
  413. buffer.data = const_cast<uint8_t *>(tensor.GetData().GetData());
  414. buffer.length = tensor.GetData().size();
  415. input_data.blobs.emplace_back(buffer);
  416. input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims());
  417. }
  418. HybridModelExecutor::ExecuteArgs args;
  419. GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model");
  420. GELOGD("Done copying input data successfully.");
  421. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  422. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  423. OutputData output_data;
  424. GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs.");
  425. GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size());
  426. int out_index = 0;
  427. outputs.resize(output_tensor_info_list.size());
  428. for (auto &out_tensor_info : output_tensor_info_list) {
  429. auto &ge_tensor = outputs[out_index];
  430. if (out_tensor_info.length > 0) {
  431. GE_CHK_GRAPH_STATUS_RET(ge_tensor.SetData(out_tensor_info.data.get(), out_tensor_info.length),
  432. "Failed to set output[%d].", out_index);
  433. }
  434. ge_tensor.MutableTensorDesc() = *args.output_desc[out_index];
  435. GELOGD("Set output[%d], tensor size = %ld, shape = [%s]",
  436. out_index,
  437. out_tensor_info.length,
  438. ge_tensor.MutableTensorDesc().MutableShape().ToString().c_str());
  439. ++out_index;
  440. }
  441. return SUCCESS;
  442. }
  443. Status HybridModelAsyncExecutor::DumpOpDebug() {
  444. const DumpProperties &dump_properties = executor_->GetContext()->dump_properties;
  445. if (dump_properties.IsOpDebugOpen()) {
  446. GELOGD("Opdebug is open in hybrid engine");
  447. uint32_t op_debug_mode = dump_properties.GetOpDebugMode();
  448. GE_CHK_RT_RET(op_debug_register_.RegisterDebugForStream(stream_, op_debug_mode, data_dumper_));
  449. is_op_debug_reg_ = true;
  450. data_dumper_.SetDumpProperties(dump_properties);
  451. data_dumper_.SetModelName(model_->GetModelName());
  452. data_dumper_.SetModelId(model_->GetModelId());
  453. data_dumper_.SetDeviceId(model_->GetDeviceId());
  454. void *global_step = nullptr;
  455. TensorValue *varible_global_step = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  456. if (varible_global_step != nullptr) {
  457. global_step = const_cast<void *>(varible_global_step->GetData());
  458. }
  459. void *loop_per_iter = nullptr;
  460. TensorValue *varible_loop_per_iter = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  461. if (varible_loop_per_iter != nullptr) {
  462. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  463. }
  464. void *loop_cond = nullptr;
  465. TensorValue *varible_loop_cond = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  466. if (varible_loop_cond != nullptr) {
  467. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  468. }
  469. data_dumper_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  470. GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "LoadDumpInfo failed in hybrid engine");
  471. GELOGD("Dump op debug SUCCESS in hybrid engine");
  472. }
  473. return SUCCESS;
  474. }
  475. } // namespace hybrid
  476. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示