You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_pipeline_executor.cc 11 kB

4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. #include "hybrid_model_pipeline_executor.h"
  2. #include "common/math/math_util.h"
  3. #include "common/dump/dump_manager.h"
  4. #include "graph/ge_context.h"
  5. #include "graph/runtime_inference_context.h"
  6. namespace ge {
  7. namespace hybrid {
  8. namespace {
  9. constexpr int kNumExecutors = 2;
  10. const int kMinLoopCount = 2;
  11. const int kIntBase = 10;
  12. const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
  13. }
  14. StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
  15. : id_(id), model_(model), pipe_config_(config) {}
  16. StageExecutor::~StageExecutor() { GELOGD("~StageExecutor(), id = %d", id_); }
  17. Status StageExecutor::Init() {
  18. GELOGD("[Executor: %d] Start to init StateExecutor", id_);
  19. context_.rt_context = pipe_config_->rt_context;
  20. GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
  21. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  22. context_.stream = stream_;
  23. root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
  24. GE_CHECK_NOTNULL(root_graph_executor_);
  25. GELOGD("[Executor: %d] Init stage executor successfully", id_);
  26. return SUCCESS;
  27. }
  28. Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
  29. GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
  30. string ctx_id = std::to_string(context.context_id);
  31. RuntimeInferenceContext::DestroyContext(ctx_id);
  32. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
  33. RuntimeInferenceContext *ctx = nullptr;
  34. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context");
  35. for (auto &host_tensor : context.model->GetHostTensors()) {
  36. auto node_id = host_tensor.first;
  37. for (const auto &output_idx_and_tensor : host_tensor.second) {
  38. auto output_idx = output_idx_and_tensor.first;
  39. GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx);
  40. ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone());
  41. }
  42. }
  43. return SUCCESS;
  44. }
  45. Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
  46. int iteration_count) {
  47. GELOGD("Start");
  48. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  49. int num_loops = iteration_count / pipe_config_->num_executors;
  50. if (id_ < iteration_count % iteration_count) {
  51. num_loops += 1;
  52. }
  53. FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
  54. num_loops *= pipe_config_->num_stages;
  55. GELOGD("[Executor: %d] loop count = %d", id_, num_loops);
  56. for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
  57. GELOGD("[Executor: %d] Start to wait for task.", id_);
  58. StageTask task_info;
  59. task_queue_.Pop(task_info);
  60. GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
  61. if (task_info.iteration >= pipe_config_->iteration_end) {
  62. GELOGE(INTERNAL_ERROR, "[Executor: %d] Unexpected iteration: %d", id_, task_info.iteration);
  63. return INTERNAL_ERROR;
  64. }
  65. if (task_info.event != nullptr) {
  66. GELOGD("[%d] Add StreamWaitEvent", id_);
  67. GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
  68. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration - 1,
  69. task_info.stage);
  70. }
  71. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] Start", task_info.iteration,
  72. task_info.stage);
  73. if (task_info.stage == 0) {
  74. GELOGD("[Executor: %d] To ResetExecutionContext", id_);
  75. GE_CHK_STATUS_RET(ResetExecutionContext(context_), "[Executor: %d] Failed to reset context", id_);
  76. context_.iteration = task_info.iteration;
  77. GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
  78. }
  79. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
  80. GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
  81. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
  82. GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);
  83. // notify next execution unit
  84. StageTask next_task;
  85. next_task.stage = task_info.stage;
  86. next_task.iteration = task_info.iteration + 1;
  87. auto sync_result = Synchronize();
  88. if (sync_result != SUCCESS) {
  89. GELOGE(sync_result, "[Executor: %d] Failed to sync result. iteration = %d", id_, task_info.iteration);
  90. context_.profiler->Dump(std::cout);
  91. context_.callback_manager->Destroy();
  92. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  93. return sync_result;
  94. }
  95. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] [Stage = %d] End", task_info.iteration, task_info.stage);
  96. // if not end stage
  97. if (task_info.stage >= pipe_config_->num_stages - 1) {
  98. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %d] Schedule End", task_info.iteration);
  99. GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
  100. context_.callback_manager->Destroy();
  101. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  102. }
  103. next_executor_->ExecuteAsync(next_task);
  104. GELOGD("[Executor: %d] Push item successfully.", id_);
  105. }
  106. GELOGD("[Executor: %d] Process task ended.", id_);
  107. return SUCCESS;
  108. }
  109. Status StageExecutor::ExecuteAsync(const StageTask &args) {
  110. (void)task_queue_.Push(args);
  111. return SUCCESS;
  112. }
  113. Status StageExecutor::Synchronize() {
  114. auto ret = root_graph_executor_->Synchronize();
  115. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
  116. return ret;
  117. }
  118. HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
  119. : model_(model), device_id_(device_id) {
  120. config_.num_executors = kNumExecutors;
  121. config_.num_stages = model_->GetRootGraphItem()->NumGroups();
  122. config_.device_id = device_id_;
  123. }
  124. Status StageExecutor::InitExecutionContext() {
  125. GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
  126. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  127. context_.model = model_;
  128. context_.session_id = ::ge::GetContext().SessionId();
  129. GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
  130. context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
  131. GE_CHECK_NOTNULL(context_.allocator);
  132. context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
  133. GE_CHECK_NOTNULL(context_.callback_manager);
  134. context_.dump_properties = DumpManager::GetInstance().GetDumpProperties(context_.session_id);
  135. if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
  136. context_.trace_enabled = true;
  137. }
  138. return SUCCESS;
  139. }
  140. Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
  141. root_graph_executor_->InitForPartialExecution(inputs, input_desc);
  142. return SUCCESS;
  143. }
  144. Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
  145. return root_graph_executor_->GetOutputs(outputs, output_desc);
  146. }
  147. void StageExecutor::Reset() {
  148. task_queue_.Stop();
  149. task_queue_.Clear();
  150. task_queue_.Restart();
  151. }
  152. Status HybridModelPipelineExecutor::Init() {
  153. const char *profiling_level = std::getenv(kEnvProfilingLevel);
  154. if (profiling_level != nullptr) {
  155. context_.profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
  156. GELOGD("Got profiling level = %ld", context_.profiling_level);
  157. if (context_.profiling_level > 0) {
  158. context_.profiler.reset(new (std::nothrow) HybridProfiler());
  159. GE_CHECK_NOTNULL(context_.profiler);
  160. }
  161. }
  162. GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
  163. GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
  164. GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
  165. return SUCCESS;
  166. }
  167. Status HybridModelPipelineExecutor::InitStageExecutors() {
  168. for (int i = 0; i < config_.num_executors; ++i) {
  169. auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
  170. GE_CHECK_NOTNULL(stage_executor);
  171. GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());
  172. if (context_.profiler != nullptr) {
  173. // will call unique_ptr::release later
  174. stage_executor->context_.profiler.reset(context_.profiler.get());
  175. stage_executor->context_.profiling_level = context_.profiling_level;
  176. }
  177. stage_executors_.emplace_back(std::move(stage_executor));
  178. }
  179. // build propagation loop
  180. for (int i = 0; i < config_.num_executors - 1; ++i) {
  181. stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
  182. }
  183. stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
  184. return SUCCESS;
  185. }
  186. Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
  187. int loop_count = args.num_loops;
  188. GE_CHECK_GE(loop_count, kMinLoopCount);
  189. auto &inputs = args.inputs;
  190. auto &input_desc = args.input_desc;
  191. // Start schedulers
  192. std::vector<std::future<Status>> futures;
  193. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  194. GELOGD("Starting executor %zu", i);
  195. auto executor = stage_executors_[i].get();
  196. executor->Reset();
  197. auto future = std::async(
  198. [loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });
  199. futures.emplace_back(std::move(future));
  200. }
  201. // Push initial tasks
  202. GELOGD("Start to execute with loops, loop count = %d", loop_count);
  203. config_.iteration_end = iteration_ + loop_count;
  204. for (int i = 0; i < config_.num_stages; ++i) {
  205. StageExecutor::StageTask task_info;
  206. task_info.stage = i;
  207. task_info.iteration = iteration_;
  208. stage_executors_[0]->ExecuteAsync(task_info);
  209. }
  210. // Wait for end of iterations
  211. bool has_error = false;
  212. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  213. GELOGD("Start to sync result of executor[%zu]", i);
  214. auto ret = futures[i].get();
  215. if (ret != SUCCESS) {
  216. GELOGE(ret, "[Executor: %zu] Failed to schedule tasks.", i);
  217. has_error = true;
  218. continue;
  219. }
  220. ret = stage_executors_[i]->Synchronize();
  221. if (ret != SUCCESS) {
  222. GELOGE(ret, "[Executor: %zu] Failed to synchronize result.", i);
  223. has_error = true;
  224. continue;
  225. }
  226. }
  227. // record for profiling analyzer
  228. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");
  229. if (context_.profiler != nullptr) {
  230. context_.profiler->Dump(std::cout);
  231. }
  232. iteration_ = config_.iteration_end;
  233. if (has_error) {
  234. GELOGE(FAILED, "Error occurred while execution");
  235. return FAILED;
  236. }
  237. auto last_iter_executor_idx = loop_count % stage_executors_.size();
  238. GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
  239. "Failed to get output from executor[%zu]", last_iter_executor_idx);
  240. return SUCCESS;
  241. }
  242. HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
  243. GELOGD("~HybridModelPipelineExecutor()");
  244. for (auto &executor : stage_executors_) {
  245. (void)executor->context_.profiler.release();
  246. }
  247. }
  248. } // namespace hybrid
  249. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示