You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node_state.cc 11 kB

5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/node_state.h"
  17. #include <chrono>
  18. #include "framework/common/debug/log.h"
  19. #include "graph/compute_graph.h"
  20. #include "graph/utils/tensor_utils.h"
  21. #include "hybrid_execution_context.h"
  22. #include "subgraph_context.h"
  23. namespace ge {
  24. namespace hybrid {
  25. namespace {
  26. // 5s * 120, wait for 10m
  27. constexpr auto kWaitInternal = 5;
  28. constexpr auto kMaxWaitTimes = 120;
  29. }
  30. ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(node_item) {
  31. this->num_pending_shapes_ = node_item.num_inputs - node_item.num_static_input_shapes;
  32. GELOGD("[%s] ShapeInferenceState created, pending shape count = %d",
  33. node_item.NodeName().c_str(),
  34. this->num_pending_shapes_);
  35. input_tensor_desc.resize(node_item.num_inputs);
  36. for (int i = 0; i < node_item.num_inputs; ++i) {
  37. node_item.GetInputDesc(i, input_tensor_desc[i]);
  38. }
  39. output_tensor_desc.resize(node_item.num_outputs);
  40. for (int i = 0; i < node_item.num_outputs; ++i) {
  41. node_item.GetOutputDesc(i, output_tensor_desc[i]);
  42. }
  43. }
  44. Status ShapeInferenceState::CheckInputShapeByShapeRange(const GeTensorDesc &tensor_desc,
  45. const GeTensorDesc &target_tensor_desc) const {
  46. std::vector<std::pair<int64_t, int64_t>> shape_range;
  47. if (tensor_desc.GetShapeRange(shape_range) != SUCCESS) {
  48. GELOGE(PARAM_INVALID, "Get shape range failed.");
  49. return PARAM_INVALID;
  50. }
  51. if (shape_range.empty()) {
  52. GELOGD("Shape range is empty, no need to check input shape.");
  53. return SUCCESS;
  54. }
  55. GeShape target_shape = target_tensor_desc.GetShape();
  56. if (TensorUtils::CheckShapeByShapeRange(target_shape, shape_range) != SUCCESS) {
  57. GELOGE(PARAM_INVALID, "Check shape by shape range failed.");
  58. return PARAM_INVALID;
  59. }
  60. return SUCCESS;
  61. }
  62. Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
  63. if (node_item.IsInputShapeStatic(idx)) {
  64. GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]",
  65. node_item.NodeName().c_str(),
  66. idx,
  67. node_item.MutableInputDesc(idx)->GetShape().ToString().c_str(),
  68. target.GetShape().ToString().c_str());
  69. return SUCCESS;
  70. }
  71. std::lock_guard<std::mutex> lk(mu_);
  72. auto &input_desc = input_tensor_desc[idx];
  73. GeShape shape = target.GetShape();
  74. input_desc.SetShape(shape);
  75. input_desc.SetOriginShape(target.GetOriginShape());
  76. int64_t tensor_size = -1;
  77. (void) TensorUtils::GetSize(target, tensor_size);
  78. if (tensor_size <= 0) {
  79. Format format = input_desc.GetFormat();
  80. DataType data_type = input_desc.GetDataType();
  81. if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) {
  82. GELOGE(FAILED, "[%s] Calculate tensor memory size failed.", node_item.NodeName().c_str());
  83. return FAILED;
  84. }
  85. }
  86. GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld",
  87. node_item.NodeName().c_str(),
  88. idx,
  89. shape.ToString().c_str(),
  90. target.GetOriginShape().ToString().c_str(),
  91. tensor_size);
  92. (void) TensorUtils::SetSize(input_desc, tensor_size);
  93. if (--num_pending_shapes_ <= 0) {
  94. ready_cv_.notify_all();
  95. }
  96. return SUCCESS;
  97. }
  98. void ShapeInferenceState::UpdateInputShapeFuture(int idx, ShapeFuture &&future) {
  99. if (node_item.IsInputShapeStatic(idx)) {
  100. GELOGD("[%s] Trying to update constant shape, idx = %d", node_item.NodeName().c_str(), idx);
  101. return;
  102. }
  103. GELOGD("[%s] Update input shape [%d] with ShapeFuture.", node_item.NodeName().c_str(), idx);
  104. std::lock_guard<std::mutex> lk(mu_);
  105. shape_futures.emplace_back(idx, std::move(future));
  106. if (--num_pending_shapes_ == 0) {
  107. ready_cv_.notify_all();
  108. }
  109. }
  110. Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &context) {
  111. if (!node_item.is_dynamic) {
  112. return SUCCESS;
  113. }
  114. std::unique_lock<std::mutex> lk(mu_);
  115. if (num_pending_shapes_ > 0) {
  116. GELOGD("[%s] Await pending shape or shape future start.", node_item.NodeName().c_str());
  117. int try_count = 0;
  118. bool wait_success = false;
  119. while (try_count++ < kMaxWaitTimes) {
  120. if (ready_cv_.wait_for(lk, std::chrono::seconds(kWaitInternal), [&]() { return num_pending_shapes_ == 0; })) {
  121. GELOGD("[%s] Await pending shape or shape future end.", node_item.NodeName().c_str());
  122. wait_success = true;
  123. break;
  124. }
  125. if (context.is_eos_) {
  126. GELOGD("[%s] Await pending shape cancelled due to end of sequence", node_item.NodeName().c_str());
  127. return END_OF_SEQUENCE;
  128. }
  129. if (context.GetStatus() != SUCCESS) {
  130. GELOGE(FAILED, "[%s] Await pending shape cancelled", node_item.NodeName().c_str());
  131. break;
  132. }
  133. }
  134. if (!wait_success) {
  135. GELOGE(FAILED, "[%s] Wait for shape timeout.", node_item.NodeName().c_str());
  136. return FAILED;
  137. }
  138. }
  139. for (size_t i = 0; i < input_tensor_desc.size(); ++i) {
  140. auto dst_tensor_desc = node_item.op_desc->MutableInputDesc(i);
  141. if (dst_tensor_desc == nullptr) {
  142. continue;
  143. }
  144. auto &tensor_desc = input_tensor_desc[i];
  145. int64_t tensor_size = -1;
  146. (void) TensorUtils::GetSize(tensor_desc, tensor_size);
  147. dst_tensor_desc->SetShape(tensor_desc.MutableShape());
  148. dst_tensor_desc->SetOriginShape(tensor_desc.GetOriginShape());
  149. (void) TensorUtils::SetSize(*dst_tensor_desc, tensor_size);
  150. }
  151. for (auto &p : shape_futures) {
  152. auto idx = p.first;
  153. auto &future = p.second;
  154. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx);
  155. const GeTensorDesc* src_tensor_desc = nullptr;
  156. GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(&src_tensor_desc));
  157. GE_CHECK_NOTNULL(src_tensor_desc);
  158. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx);
  159. auto input_desc = node_item.MutableInputDesc(idx);
  160. GE_CHECK_NOTNULL(input_desc);
  161. int64_t tensor_size = -1;
  162. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  163. GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s], index = %zu",
  164. node_item.NodeName().c_str(),
  165. idx,
  166. src_tensor_desc->GetShape().ToString().c_str(),
  167. src_tensor_desc->GetOriginShape().ToString().c_str(),
  168. tensor_size);
  169. input_desc->SetShape(src_tensor_desc->GetShape());
  170. input_desc->SetOriginShape(src_tensor_desc->GetOriginShape());
  171. (void) TensorUtils::SetSize(*input_desc, tensor_size);
  172. }
  173. return SUCCESS;
  174. }
  175. const vector<GeTensorDesc> &ShapeInferenceState::GetOutputTensorDesc() const {
  176. return output_tensor_desc;
  177. }
  178. Status ShapeInferenceState::UpdateOutputDesc() {
  179. for (size_t i = 0; i < output_tensor_desc.size(); ++i) {
  180. auto src_tensor_desc = node_item.MutableOutputDesc(i);
  181. GE_CHECK_NOTNULL(src_tensor_desc);
  182. auto &dst_tensor_desc = output_tensor_desc[i];
  183. dst_tensor_desc.SetShape(src_tensor_desc->MutableShape());
  184. dst_tensor_desc.SetOriginShape(src_tensor_desc->GetOriginShape());
  185. int64_t tensor_size = -1;
  186. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  187. (void) TensorUtils::SetSize(dst_tensor_desc, tensor_size);
  188. }
  189. return SUCCESS;
  190. }
  191. ShapeFuture::ShapeFuture(NodeState *src_node,
  192. uint32_t src_index,
  193. SubgraphContext *subgraph_context)
  194. : src_node_(src_node), src_index_(src_index), subgraph_context_(subgraph_context) {
  195. }
  196. NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context)
  197. : node_item_(&node_item), shape_inference_state_(node_item), subgraph_context_(subgraph_context) {
  198. this->op_desc_ = node_item.node->GetOpDesc();
  199. }
  200. Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const {
  201. for (auto &src_node : node_item_->dependents_for_execution) {
  202. GELOGD("[%s] Start to wait for data dependent node: [%s]",
  203. node_item_->NodeName().c_str(),
  204. src_node->GetName().c_str());
  205. RECORD_EXECUTION_EVENT(&context,
  206. node_item_->NodeName().c_str(),
  207. "[AwaitNodeDone] [%s] Start",
  208. src_node->GetName().c_str());
  209. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node),
  210. "[%s] Await node [%s] failed.",
  211. GetName().c_str(),
  212. src_node->GetName().c_str());
  213. RECORD_EXECUTION_EVENT(&context,
  214. node_item_->NodeName().c_str(),
  215. "[AwaitNodeDone] [%s] End",
  216. src_node->GetName().c_str());
  217. GELOGD("[%s] Done waiting node.", src_node->GetName().c_str());
  218. }
  219. return SUCCESS;
  220. }
  221. Status NodeState::WaitForPrepareDone() {
  222. if (prepare_future_.valid()) {
  223. GELOGD("[%s] Start to wait for prepare future.", GetName().c_str());
  224. GE_CHK_STATUS_RET(prepare_future_.get(),
  225. "[%s] PreRun failed.", GetName().c_str());
  226. }
  227. return SUCCESS;
  228. }
  229. Status NodeState::UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape) {
  230. auto self_tensor_desc = op_desc_->MutableOutputDesc(index);
  231. GE_CHECK_NOTNULL(self_tensor_desc);
  232. self_tensor_desc->SetShape(shape);
  233. self_tensor_desc->SetOriginShape(ori_shape);
  234. return SUCCESS;
  235. }
  236. void NodeState::SetTaskContext(std::shared_ptr<TaskContext> &task_context) {
  237. task_context_ = task_context;
  238. }
  239. std::shared_ptr<TaskContext> NodeState::GetTaskContext() {
  240. return task_context_;
  241. }
  242. Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) {
  243. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  244. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  245. auto &output_desc = src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  246. shape = output_desc.GetShape();
  247. ori_shape = output_desc.GetOriginShape();
  248. GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str());
  249. return SUCCESS;
  250. }
  251. Status ShapeFuture::GetTensorDesc(const GeTensorDesc **tensor_desc) {
  252. GE_CHECK_NOTNULL(tensor_desc);
  253. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  254. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  255. *tensor_desc = &src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  256. return SUCCESS;
  257. }
  258. } // namespace hybrid
  259. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示