You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

execution_engine.cc 18 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/worker/execution_engine.h"
  17. #include "graph/runtime_inference_context.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/tensor_adapter.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "hybrid/node_executor/node_executor.h"
  22. #include "hybrid/executor//worker//shape_inference_engine.h"
  23. #include "common/dump/dump_op.h"
  24. #include "common/profiling/profiling_manager.h"
  25. namespace ge {
  26. namespace hybrid {
  27. namespace {
  28. constexpr int64_t kMaxPadding = 63;
  29. Status LogInputs(const NodeItem &node_item, const TaskContext &task_context) {
  30. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  31. const auto &input_tensor = task_context.GetInput(i);
  32. GE_CHECK_NOTNULL(input_tensor);
  33. const auto &tensor_desc = task_context.GetInputDesc(i);
  34. GE_CHECK_NOTNULL(tensor_desc);
  35. GELOGD("[%s] Print task args. input[%d] = %s, shape = [%s]",
  36. node_item.NodeName().c_str(),
  37. i,
  38. input_tensor->DebugString().c_str(),
  39. tensor_desc->GetShape().ToString().c_str());
  40. }
  41. return SUCCESS;
  42. }
  43. Status LogOutputs(const NodeItem &node_item, const TaskContext &task_context) {
  44. for (auto i = 0; i < task_context.NumOutputs(); ++i) {
  45. const auto &output_tensor = task_context.GetOutput(i);
  46. GE_CHECK_NOTNULL(output_tensor);
  47. const auto &tensor_desc = node_item.MutableOutputDesc(i);
  48. GE_CHECK_NOTNULL(tensor_desc);
  49. GELOGD("[%s] Print task args. output[%d] = %s, shape = [%s]",
  50. node_item.NodeName().c_str(),
  51. i,
  52. output_tensor->DebugString().c_str(),
  53. tensor_desc->MutableShape().ToString().c_str());
  54. }
  55. return SUCCESS;
  56. }
  57. } // namespace
  58. class NodeDoneCallback {
  59. public:
  60. NodeDoneCallback(GraphExecutionContext *graph_context, std::shared_ptr<TaskContext> task_context);
  61. ~NodeDoneCallback() = default;
  62. Status OnNodeDone();
  63. private:
  64. Status PrepareConstInputs(const NodeItem &node_item);
  65. Status DumpDynamicNode();
  66. Status ProfilingReport();
  67. Status GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  68. std::vector<TaskDescInfo> &task_desc_info);
  69. GraphExecutionContext *graph_context_;
  70. std::shared_ptr<TaskContext> context_;
  71. DumpOp dump_op_;
  72. };
  73. NodeDoneCallback::NodeDoneCallback(GraphExecutionContext *graph_context,
  74. std::shared_ptr<TaskContext> task_context)
  75. : graph_context_(graph_context), context_(std::move(task_context)) {
  76. }
  77. Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
  78. for (auto output_idx : node_item.to_const_output_id_list) {
  79. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  80. "[PrepareConstInputs] [index = %d] Start",
  81. output_idx);
  82. auto output_tensor = context_->GetOutput(output_idx);
  83. GE_CHECK_NOTNULL(output_tensor);
  84. Tensor tensor;
  85. auto ge_tensor_desc = node_item.MutableOutputDesc(output_idx);
  86. GE_CHECK_NOTNULL(ge_tensor_desc);
  87. tensor.SetTensorDesc(TensorAdapter::GeTensorDesc2TensorDesc(*ge_tensor_desc));
  88. int64_t tensor_size;
  89. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorSizeInBytes(*ge_tensor_desc, tensor_size),
  90. "Failed to invoke GetTensorSizeInBytes");
  91. if (output_tensor->GetSize() < static_cast<size_t>(tensor_size)) {
  92. GELOGE(INTERNAL_ERROR,
  93. "[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s",
  94. node_item.NodeName().c_str(),
  95. output_idx,
  96. tensor_size,
  97. output_tensor->DebugString().c_str());
  98. return INTERNAL_ERROR;
  99. }
  100. vector<uint8_t> host_buffer(static_cast<unsigned long>(tensor_size));
  101. GELOGD("[%s] To cache output[%d] to host, size = %zu",
  102. node_item.NodeName().c_str(),
  103. output_idx,
  104. output_tensor->GetSize());
  105. if (tensor_size > 0) {
  106. GE_CHK_RT_RET(rtMemcpy(host_buffer.data(),
  107. tensor_size,
  108. output_tensor->GetData(),
  109. tensor_size,
  110. RT_MEMCPY_DEVICE_TO_HOST));
  111. }
  112. tensor.SetData(std::move(host_buffer));
  113. string context_id = std::to_string(graph_context_->context_id);
  114. RuntimeInferenceContext *runtime_infer_ctx = nullptr;
  115. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(context_id, &runtime_infer_ctx),
  116. "Failed to get RuntimeInferenceContext, context_id = %s", context_id.c_str());
  117. GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)),
  118. "Failed to SetTensor, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
  119. GELOGD("[%s] Output[%d] cached successfully in context: %s. node_id = %d, shape = [%s]",
  120. node_item.NodeName().c_str(),
  121. output_idx,
  122. context_id.c_str(),
  123. node_item.node_id,
  124. ge_tensor_desc->GetShape().ToString().c_str());
  125. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  126. "[PrepareConstInputs] [index = %d] End",
  127. output_idx);
  128. }
  129. return SUCCESS;
  130. }
  131. Status NodeDoneCallback::GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  132. std::vector<TaskDescInfo> &task_desc_info) {
  133. GE_CHECK_NOTNULL(node);
  134. GE_CHECK_NOTNULL(model);
  135. // only report aicpu and aicore node
  136. bool is_profiling_report = context_->GetNodeItem().is_profiling_report;
  137. if (!is_profiling_report) {
  138. GELOGD("Node[%s] is not aicore or aicpu, and no need to report data.", node->GetName().c_str());
  139. return SUCCESS;
  140. }
  141. GELOGD("GetTaskDescInfo of node [%s] start.", node->GetName().c_str());
  142. auto &prof_mgr = ProfilingManager::Instance();
  143. task_desc_info = context_->GetProfilingTaskDescInfo();
  144. context_->ClearProfilingTaskDescInfo();
  145. for (auto &tmp_task_desc : task_desc_info) {
  146. // save op input and output info
  147. auto op_desc = node->GetOpDesc();
  148. GE_CHECK_NOTNULL(op_desc);
  149. prof_mgr.GetOpInputOutputInfo(op_desc, tmp_task_desc);
  150. }
  151. return SUCCESS;
  152. }
  153. Status NodeDoneCallback::ProfilingReport() {
  154. auto node = context_->GetNodeItem().node;
  155. if (node == nullptr) {
  156. GELOGE(PARAM_INVALID, "Get node is nullptr");
  157. return PARAM_INVALID;
  158. }
  159. const auto &op_type = node->GetType();
  160. if (op_type == PARTITIONEDCALL) {
  161. return SUCCESS;
  162. }
  163. GE_CHECK_NOTNULL(graph_context_);
  164. const HybridModel *model = graph_context_->model;
  165. GE_CHECK_NOTNULL(model);
  166. GELOGD("ProfilingReport of node [%s] model [%s] start.", node->GetName().c_str(), model->GetModelName().c_str());
  167. std::vector<TaskDescInfo> task_desc_info;
  168. auto profiling_ret = GetTaskDescInfo(node, model, task_desc_info);
  169. if (profiling_ret != RT_ERROR_NONE) {
  170. GELOGE(profiling_ret, "Get task info of node[%s] failed.", node->GetName().c_str());
  171. return profiling_ret;
  172. }
  173. auto &profiling_manager = ProfilingManager::Instance();
  174. profiling_manager.ReportProfilingData(model->GetModelId(), task_desc_info);
  175. return SUCCESS;
  176. }
  177. Status NodeDoneCallback::DumpDynamicNode() {
  178. auto node = context_->GetNodeItem().node;
  179. if (node == nullptr) {
  180. GELOGE(PARAM_INVALID, "Get node is nullptr");
  181. return PARAM_INVALID;
  182. }
  183. auto op_desc = node->GetOpDesc();
  184. GE_CHECK_NOTNULL(graph_context_);
  185. const HybridModel *model = graph_context_->model;
  186. GE_CHECK_NOTNULL(model);
  187. std::string dynamic_model_name = model->GetModelName();
  188. std::string dynamic_om_name = model->GetOmName();
  189. uint32_t model_id = model->GetModelId();
  190. if (!context_->GetDumpProperties().IsLayerNeedDump(dynamic_model_name, dynamic_om_name, op_desc->GetName())) {
  191. GELOGI("[%s] is not in dump list, no need dump", op_desc->GetName().c_str());
  192. return SUCCESS;
  193. }
  194. dump_op_.SetDynamicModelInfo(dynamic_model_name, dynamic_om_name, model_id);
  195. auto stream = context_->GetStream();
  196. vector<uintptr_t> input_addrs;
  197. vector<uintptr_t> output_addrs;
  198. for (int i = 0; i < context_->NumInputs(); i++) {
  199. auto tensor_value = context_->GetInput(i);
  200. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
  201. uintptr_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  202. input_addrs.emplace_back(input_addr);
  203. }
  204. for (int j = 0; j < context_->NumOutputs(); j++) {
  205. auto tensor_value = context_->GetOutput(j);
  206. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
  207. uintptr_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  208. output_addrs.emplace_back(output_addr);
  209. }
  210. dump_op_.SetDumpInfo(context_->GetDumpProperties(), op_desc, input_addrs, output_addrs, stream);
  211. void *loop_per_iter = nullptr;
  212. TensorValue *varible_loop_per_iter = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  213. if (varible_loop_per_iter != nullptr) {
  214. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  215. }
  216. void *loop_cond = nullptr;
  217. TensorValue *varible_loop_cond = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  218. if (varible_loop_cond != nullptr) {
  219. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  220. }
  221. void *global_step = context_->GetExecutionContext()->global_step;
  222. dump_op_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  223. GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "Failed to launch dump op in hybird model");
  224. auto rt_ret = rtStreamSynchronize(stream);
  225. if (rt_ret != RT_ERROR_NONE) {
  226. GELOGE(rt_ret, "rtStreamSynchronize failed");
  227. return rt_ret;
  228. }
  229. return SUCCESS;
  230. }
  231. Status NodeDoneCallback::OnNodeDone() {
  232. auto &node_item = context_->GetNodeItem();
  233. GELOGI("[%s] Start callback process.", node_item.NodeName().c_str());
  234. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Compute] End");
  235. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] Start");
  236. const DumpProperties &dump_properties = context_->GetDumpProperties();
  237. if (dump_properties.IsDumpOpen() || context_->IsOverFlow()) {
  238. GELOGI("Start to dump dynamic shape op");
  239. GE_CHK_STATUS_RET(DumpDynamicNode(), "Failed to dump dynamic node");
  240. }
  241. if (ProfilingManager::Instance().ProfilingModelExecuteOn()) {
  242. GE_CHK_STATUS_RET(ProfilingReport(), "Report node[%s] to profiling failed.",
  243. node_item.NodeName().c_str());
  244. }
  245. // release workspace
  246. context_->ReleaseWorkspace();
  247. // release inputs
  248. for (int i = 0; i < context_->NumInputs(); ++i) {
  249. context_->ReleaseInput(i);
  250. }
  251. GE_CHK_STATUS_RET_NOLOG(PrepareConstInputs(node_item));
  252. if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE) {
  253. // update output tensor sizes
  254. GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(node_item));
  255. GE_CHK_STATUS_RET_NOLOG(context_->GetNodeState()->GetShapeInferenceState().UpdateOutputDesc());
  256. }
  257. // PropagateOutputs for type == DEPEND_COMPUTE
  258. if (node_item.shape_inference_type == DEPEND_COMPUTE) {
  259. if (graph_context_->trace_enabled) {
  260. (void) LogOutputs(node_item, *context_);
  261. }
  262. GE_CHK_STATUS_RET(context_->PropagateOutputs(),
  263. "[%s] Failed to propagate outputs failed",
  264. node_item.NodeName().c_str());
  265. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[PropagateOutputs] End");
  266. }
  267. // release condition variable
  268. if (node_item.has_observer) {
  269. GELOGI("[%s] Notify observer. node_id = %d", node_item.NodeName().c_str(), node_item.node_id);
  270. context_->NodeDone();
  271. }
  272. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] End");
  273. return SUCCESS;
  274. }
  275. Status ExecutionEngine::ExecuteAsync(NodeState &node_state,
  276. const std::shared_ptr<TaskContext> &task_context,
  277. GraphExecutionContext &execution_context) {
  278. GELOGI("[%s] Node is ready for execution", task_context->GetNodeName());
  279. RECORD_EXECUTION_EVENT(&execution_context, task_context->GetNodeName(), "Start");
  280. auto cb = std::shared_ptr<NodeDoneCallback>(new(std::nothrow) NodeDoneCallback(&execution_context, task_context));
  281. GE_CHECK_NOTNULL(cb);
  282. auto callback = [task_context, cb]() {
  283. auto ret = cb->OnNodeDone();
  284. if (ret != SUCCESS) {
  285. task_context->OnError(ret);
  286. }
  287. };
  288. GE_CHK_STATUS_RET_NOLOG(DoExecuteAsync(node_state, *task_context, execution_context, callback));
  289. GE_CHK_STATUS_RET_NOLOG(PropagateOutputs(*node_state.GetNodeItem(), *task_context, execution_context));
  290. return SUCCESS;
  291. }
  292. Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
  293. TaskContext &task_context,
  294. GraphExecutionContext &context,
  295. const std::function<void()> &callback) {
  296. const auto &task = node_state.GetKernelTask();
  297. if (task == nullptr) {
  298. GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state.GetName().c_str());
  299. return INTERNAL_ERROR;
  300. }
  301. // Wait for dependent nodes(DEPEND_COMPUTE), so that the input tensors are valid.
  302. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[AwaitDependents] Start");
  303. HYBRID_CHK_STATUS_RET(node_state.AwaitInputTensors(context),
  304. "[%s] Failed to wait for dependent nodes.",
  305. node_state.GetName().c_str());
  306. const auto &node_item = *node_state.GetNodeItem();
  307. auto executor = node_item.node_executor;
  308. GE_CHECK_NOTNULL(executor);
  309. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start");
  310. GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context),
  311. "[%s] Failed to prepare task",
  312. node_state.GetName().c_str());
  313. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End");
  314. GELOGD("[%s] Done task preparation successfully.", node_state.GetName().c_str());
  315. if (context.trace_enabled) {
  316. LogInputs(node_item, task_context);
  317. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  318. LogOutputs(node_item, task_context);
  319. }
  320. }
  321. GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "Failed to validate input tensors.");
  322. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ValidateInputTensors] End");
  323. if (context.profiling_level > 0) {
  324. auto *ctx = &context;
  325. const string &name = node_state.GetName();
  326. (void)task_context.RegisterCallback([ctx, name]() {
  327. RECORD_CALLBACK_EVENT(ctx, name.c_str(), "[Compute] Start");
  328. });
  329. }
  330. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] Start");
  331. HYBRID_CHK_STATUS_RET(node_item.node_executor->ExecuteTask(*task, task_context, callback),
  332. "[%s] Failed to execute task",
  333. node_state.GetName().c_str());
  334. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] End");
  335. GELOGD("[%s] Done task launch successfully.", node_state.GetName().c_str());
  336. return SUCCESS;
  337. }
  338. Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const TaskContext &task_context) {
  339. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  340. const auto &input_tensor = task_context.GetInput(i);
  341. GE_CHECK_NOTNULL(input_tensor);
  342. if (input_tensor->GetData() == nullptr) {
  343. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  344. continue;
  345. }
  346. const auto &tensor_desc = task_context.MutableInputDesc(i);
  347. GE_CHECK_NOTNULL(tensor_desc);
  348. if (tensor_desc->GetDataType() == DT_STRING) {
  349. GELOGD("[%s] Skipping DT_STRING input, index = %d", task_context.GetNodeName(), i);
  350. continue;
  351. }
  352. if (input_tensor->GetData() == nullptr) {
  353. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  354. continue;
  355. }
  356. int64_t expected_size;
  357. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, expected_size));
  358. GELOGD("[%s] Input[%d] expects [%ld] bytes.", task_context.GetNodeName(), i, expected_size);
  359. auto size_diff = expected_size - static_cast<int64_t>(input_tensor->GetSize());
  360. if (size_diff > 0) {
  361. if (size_diff <= kMaxPadding) {
  362. GELOGW("[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
  363. task_context.GetNodeName(),
  364. i,
  365. expected_size,
  366. input_tensor->GetSize());
  367. } else {
  368. GELOGE(INTERNAL_ERROR,
  369. "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
  370. task_context.GetNodeName(),
  371. i,
  372. expected_size,
  373. input_tensor->GetSize());
  374. return INTERNAL_ERROR;
  375. }
  376. }
  377. }
  378. return SUCCESS;
  379. }
  380. Status ExecutionEngine::PropagateOutputs(const NodeItem &node_item,
  381. TaskContext &task_context,
  382. GraphExecutionContext &context) {
  383. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  384. GE_CHK_STATUS_RET(task_context.PropagateOutputs(),
  385. "[%s] Failed to propagate outputs.",
  386. node_item.NodeName().c_str());
  387. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PropagateOutputs] End");
  388. GELOGD("[%s] Done propagating outputs successfully.", node_item.NodeName().c_str());
  389. }
  390. return SUCCESS;
  391. }
  392. } // namespace hybrid
  393. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示