You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model.h 5.4 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_HYBRID_HYBRID_GRAPH_H_
  17. #define GE_HYBRID_HYBRID_GRAPH_H_
  18. #include <vector>
  19. #include <queue>
  20. #include <memory>
  21. #include "framework/common/ge_inner_error_codes.h"
  22. #include "graph/load/model_manager/data_inputer.h"
  23. #include "graph/load/model_manager/task_info/task_info.h"
  24. #include "graph/node.h"
  25. #include "hybrid/common/tensor_value.h"
  26. #include "hybrid/model/node_item.h"
  27. #include "hybrid/model/graph_item.h"
  28. #include "model/ge_root_model.h"
  29. namespace ge {
  30. namespace hybrid {
  31. class HybridModel {
  32. public:
  33. explicit HybridModel(GeRootModelPtr ge_model);
  34. ~HybridModel();
  35. Status Init(bool is_single_op = false);
  36. const NodeItem *GetNodeItem(const NodePtr &node) const;
  37. uint64_t GetSessionId() const {
  38. return root_runtime_param_.session_id;
  39. }
  40. void *GetGlobalStep() const;
  41. GeModelPtr GetGeModel(const NodePtr &node) const;
  42. NodeItem *MutableNodeItem(const NodePtr &node);
  43. size_t TotalVarMemSize() const {
  44. return root_runtime_param_.var_size;
  45. }
  46. const uint8_t* GetVarMemBase() const {
  47. return var_mem_base_;
  48. }
  49. void SetDeviceId(uint32_t device_id) {
  50. device_id_ = device_id;
  51. }
  52. uint32_t GetDeviceId() {
  53. return device_id_;
  54. }
  55. void SetModelId(uint32_t model_id) {
  56. model_id_ = model_id;
  57. }
  58. void SetOmName(const string &om_name) {
  59. om_name_ = om_name;
  60. }
  61. const std::string &GetOmName() const {
  62. return om_name_;
  63. }
  64. uint32_t GetModelId() const {
  65. return model_id_;
  66. }
  67. bool IsSingleOp() const {
  68. return is_single_op_;
  69. }
  70. TensorValue* GetVariable(const string &name) const;
  71. NodePtr GetVariableNode(const string &name) const;
  72. TensorValue* GetTensor(const NodePtr &node) const;
  73. TensorBuffer* GetModelWeight(const std::string &subgraph_name) const;
  74. const std::map<int64_t, std::vector<std::pair<int, Tensor>>> &GetHostTensors() const;
  75. const std::vector<domi::TaskDef>* GetTaskDefs(const NodePtr &node) const;
  76. const GraphItem *GetRootGraphItem() const;
  77. const GraphItem *GetSubgraphItem(const std::string &graph_name) const;
  78. const GraphItem *GetSubgraphItem(const ComputeGraphPtr &subgraph) const;
  79. const string &GetModelName() const;
  80. Status GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type);
  81. void GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order);
  82. void GetModelAttr(std::vector<std::string> &dynamic_output_shape_info);
  83. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc,
  84. vector<InputOutputDescInfo> &output_desc,
  85. std::vector<uint32_t> &input_formats,
  86. std::vector<uint32_t> &outputFormats);
  87. Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats);
  88. void CreateOutput(ConstGeTensorDescPtr &output_desc, InputOutputDescInfo &output, uint32_t &format_result);
  89. Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &formats);
  90. void CreateInputDimsInfo(const OpDescPtr &op_desc, InputOutputDescInfo &input);
  91. void SetModelDescVersion(bool is_new_model_desc) { is_new_model_desc_ = is_new_model_desc; }
  92. void SetInputDimsAndShapeRangesInfo(const vector<int64_t> &model_input_dims,
  93. std::vector<std::pair<int64_t, int64_t>> &shape_ranges,
  94. InputOutputDescInfo &input);
  95. private:
  96. friend class HybridModelBuilder;
  97. friend class HybridModelAsyncExecutor;
  98. TensorValue* GetConstant(const NodePtr &node) const;
  99. std::string model_name_;
  100. GeRootModelPtr ge_root_model_;
  101. std::map<uint32_t, NodeItem *> input_nodes_;
  102. ComputeGraphPtr root_graph_;
  103. std::map<std::string, NodePtr> device_variable_nodes_; //lint !e148
  104. std::map<std::string, NodePtr> host_variable_nodes_; //lint !e148
  105. std::map<std::string, std::unique_ptr<TensorValue>> variable_tensors_;
  106. std::map<NodePtr, std::unique_ptr<TensorValue>> constant_tensors_;
  107. std::map<NodePtr, std::vector<domi::TaskDef>> task_defs_;
  108. std::map<NodePtr, GeModelPtr> known_shape_sub_models_;
  109. std::unique_ptr<GraphItem> root_graph_item_;
  110. std::map<std::string, std::unique_ptr<GraphItem>> subgraph_items_;
  111. std::map<NodePtr, std::unique_ptr<NodeItem>> node_items_;
  112. std::map<int64_t, std::vector<std::pair<int, Tensor>>> host_tensors_;
  113. bool is_new_model_desc_ = false; // support aipp
  114. bool is_single_op_ = false;
  115. // runtime fields
  116. uint32_t device_id_ = 0;
  117. uint32_t model_id_ = 0;
  118. uint8_t *var_mem_base_ = nullptr;
  119. std::map<string, std::unique_ptr<TensorBuffer>> weight_buffer_map_;
  120. RuntimeParam root_runtime_param_;
  121. string om_name_;
  122. std::unique_ptr<TensorBuffer> global_step_;
  123. };
  124. } // namespace hybrid
  125. } // namespace ge
  126. #endif // GE_HYBRID_HYBRID_GRAPH_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示