You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_var_manager.h 11 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_MANAGER_GRAPH_VAR_MANAGER_H_
  17. #define GE_GRAPH_MANAGER_GRAPH_VAR_MANAGER_H_
  18. #include <atomic>
  19. #include <map>
  20. #include <memory>
  21. #include <string>
  22. #include <unordered_map>
  23. #include <unordered_set>
  24. #include <vector>
  25. #include "framework/common/ge_inner_error_codes.h"
  26. #include "framework/common/ge_types.h"
  27. #include "framework/common/l2_cache_optimize.h"
  28. #include "graph/ge_tensor.h"
  29. #include "graph/op_desc.h"
  30. #include "external/graph/tensor.h"
  31. #include "runtime/mem.h"
  32. namespace ge {
  33. const size_t kGraphMemoryManagerMallocMaxSize = 26UL * 1024UL * 1024UL * 1024UL;
  34. const size_t kMemoryVarManagerMallocSize = 5UL * 1024UL * 1024UL * 1024UL;
  35. const size_t kMemoryVarLogicBase = 32UL * 1024UL * 1024UL * 1024UL;
  36. const size_t kUseMaxMemorySize = kGraphMemoryManagerMallocMaxSize + kMemoryVarManagerMallocSize;
  37. const size_t kGraphMemoryBuffer = 4UL * 1024UL * 1024UL * 1024UL;
  38. const size_t kMaxMemorySize = 256UL * 1024UL * 1024UL * 1024UL;
  39. const char kEnvGeuseStaticMemory[] = "GE_USE_STATIC_MEMORY";
  40. const uint64_t kSessionMemAlignSize = 512;
  41. const size_t kSessionMemAlignUnit = 2;
  42. const double kGraphMemoryManagerMallocRatio = 26.0 / 32.0;
  43. const double kVarMemoryManagerMallocRatio = 5.0 / 32.0;
  44. enum MemStatus {
  45. NORMAL = 0,
  46. COMPILE_TASK = 1,
  47. RUN_TASK = 2,
  48. };
  49. enum SessionVersion {
  50. ClOUD_VERSION = 0,
  51. MINI_VERSION = 1,
  52. OTHER_VERSION = 2,
  53. };
  54. struct MemResourceCfg {
  55. uint32_t mem_status;
  56. size_t mem_res_size;
  57. MemResourceCfg() : mem_status(0), mem_res_size(0) {}
  58. };
  59. struct VarAddrMgr {
  60. ge::GeTensorDesc tensor_desc;
  61. uint8_t *address;
  62. uint64_t offset;
  63. rtMemType_t memory_type;
  64. VarAddrMgr() : address(nullptr), offset(0), memory_type(RT_MEMORY_HBM) {}
  65. };
  66. struct VarBroadCastInfo {
  67. std::string var_name;
  68. std::string broadcast_name;
  69. int idx;
  70. int64_t input_offset;
  71. uint64_t input_size;
  72. int64_t output_offset;
  73. uint64_t output_size;
  74. };
  75. struct VarFormatInfo {
  76. int format;
  77. int data_type;
  78. std::vector<int64_t> dims;
  79. };
  80. struct TransNodeInfo {
  81. std::string node_type;
  82. GeTensorDesc input;
  83. GeTensorDesc output;
  84. };
  85. using VarTransRoad = std::vector<TransNodeInfo>;
  86. class VarResource {
  87. public:
  88. explicit VarResource(uint64_t session_id_);
  89. ~VarResource();
  90. ge::Status GetVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t **dev_ptr,
  91. rtMemType_t &memory_type);
  92. void GetAllVarAddrMgr(std::unordered_map<std::string, VarAddrMgr> &var_addr_mgr_map);
  93. void SetVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t *dev_ptr,
  94. rtMemType_t rtMemType_t);
  95. ge::Status SaveVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t *address,
  96. rtMemType_t memory_type);
  97. ge::Status GetCurVarDesc(const std::string &var_name, ge::GeTensorDesc &tensor_desc);
  98. ge::Status RenewCurVarDesc(const std::string &var_name, const ge::OpDescPtr &op_desc);
  99. void SaveBroadCastInfo(uint32_t graph_id, const VarBroadCastInfo &broad_cast_info);
  100. ge::Status GetBroadCastInfo(uint32_t graph_id, const string &var_name, VarBroadCastInfo &broad_cast_info);
  101. Status SetTransRoad(const std::string &var_name, const VarTransRoad &trans_road) {
  102. if (var_to_trans_road_.find(var_name) != var_to_trans_road_.end()) {
  103. GELOGW("Var name: %s has already set.", var_name.c_str());
  104. return GRAPH_SUCCESS;
  105. }
  106. var_to_trans_road_[var_name] = trans_road;
  107. return GRAPH_SUCCESS;
  108. }
  109. VarTransRoad *GetTransRoad(const std::string &var_name);
  110. Status SetChangedGraphId(const std::string &var_name, uint32_t graph_id) {
  111. var_names_to_changed_graph_id_[var_name] = graph_id;
  112. return SUCCESS;
  113. }
  114. Status GetChangedGraphId(const std::string &var_name, uint32_t &graph_id);
  115. void RemoveChangedGraphId(const std::string &var_name) { var_names_to_changed_graph_id_.erase(var_name); }
  116. Status SetAllocatedGraphId(const std::string &var_name, uint32_t graph_id);
  117. Status GetAllocatedGraphId(const std::string &var_name, uint32_t &graph_id);
  118. void RemoveAllocatedGraphId(const std::string &var_name) { var_names_to_allocated_graph_id_.erase(var_name); }
  119. bool IsVarExist(const std::string &var_name, const ge::GeTensorDesc &tensor_desc);
  120. bool IsVarExist(const std::string &var_name);
  121. bool IsVarAddr(const int64_t &offset);
  122. rtMemType_t GetVarMemType(const int64_t &offset);
  123. std::unordered_map<std::string, ge::GeTensorDesc> GetAllVarDesc() const { return cur_var_tensor_desc_map_; }
  124. private:
  125. std::string VarKey(const std::string &var_name, const ge::GeTensorDesc &tensor_desc);
  126. uint64_t session_id_;
  127. std::unordered_map<uint64_t, rtMemType_t> var_offset_map_;
  128. std::unordered_map<std::string, VarAddrMgr> var_addr_mgr_map_;
  129. std::unordered_map<std::string, ge::GeTensorDesc> cur_var_tensor_desc_map_;
  130. std::unordered_map<std::string, std::vector<TransNodeInfo>> var_to_trans_road_;
  131. std::map<std::string, uint32_t> var_names_to_changed_graph_id_;
  132. std::map<std::string, uint32_t> var_names_to_allocated_graph_id_;
  133. std::map<uint32_t, std::unordered_map<std::string, VarBroadCastInfo>> var_broad_cast_info_;
  134. };
  135. class MemResource {
  136. public:
  137. MemResource();
  138. virtual ~MemResource() = default;
  139. static MemResource *BuildMemResourceFromType(rtMemType_t mem_type);
  140. virtual Status AssignVarMem(const std::string &var_name, uint64_t size, uint64_t session_id, size_t &mem_offset) = 0;
  141. uint64_t GetVarMemSize() const;
  142. void UpdateVarMemSize(int64_t mem_size);
  143. protected:
  144. uint64_t total_size_;
  145. uint64_t var_mem_size_;
  146. };
  147. class HbmMemResource : public MemResource {
  148. public:
  149. HbmMemResource() = default;
  150. ~HbmMemResource() override = default;
  151. Status AssignVarMem(const std::string &var_name, uint64_t size, uint64_t session_id, size_t &address) override;
  152. };
  153. class RdmaMemResource : public MemResource {
  154. public:
  155. RdmaMemResource() = default;
  156. ~RdmaMemResource() override = default;
  157. Status AssignVarMem(const std::string &var_name, uint64_t size, uint64_t session_id, size_t &address) override;
  158. };
  159. class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY VarManager {
  160. public:
  161. static VarManager *Instance(uint64_t session_id);
  162. explicit VarManager(uint64_t session_id);
  163. ~VarManager() = default;
  164. ge::Status Init(const uint32_t &version, const uint64_t &session_id, const uint32_t &device_id,
  165. const uint64_t &job_id);
  166. void Destory();
  167. ge::Status AssignVarMem(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, rtMemType_t memory_type);
  168. ge::Status SetVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t *dev_ptr,
  169. rtMemType_t memory_type);
  170. ge::Status SaveVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t *address,
  171. rtMemType_t memory_type);
  172. ge::Status GetVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t **dev_ptr,
  173. rtMemType_t &memory_type);
  174. ge::Status GetVarAddr(const std::string &var_name, const ge::GeTensorDesc &tensor_desc, uint8_t **dev_ptr);
  175. ge::Status SaveBroadCastInfo(uint32_t graph_id, const VarBroadCastInfo &broad_cast_info);
  176. ge::Status GetCurVarDesc(const std::string &var_name, ge::GeTensorDesc &tensor_desc);
  177. ge::Status RenewCurVarDesc(const std::string &var_name, ge::OpDescPtr op_desc);
  178. ge::Status MallocVarMemory(size_t memory_size = kMemoryVarManagerMallocSize);
  179. ge::Status FreeVarMemory();
  180. Status SetTransRoad(const std::string &var_name, const VarTransRoad &trans_road);
  181. VarTransRoad *GetTransRoad(const std::string &var_name);
  182. Status SetChangedGraphId(const std::string &var_name, uint32_t graph_id);
  183. Status GetChangedGraphId(const std::string &var_name, uint32_t &graph_id);
  184. Status SetMemoryMallocSize(const std::map<string, string> &options);
  185. const size_t &GetGraphMemoryMaxSize() const { return graph_mem_max_size_; }
  186. const size_t &GetVarMemMaxSize() const { return var_mem_max_size_; }
  187. const size_t &GetVarMemLogicBase() const { return var_mem_logic_base_; }
  188. const size_t &GetUseMaxMemorySize() const { return use_max_mem_size_; }
  189. void RemoveChangedGraphId(const std::string &var_name);
  190. Status SetAllocatedGraphId(const std::string &var_name, uint32_t graph_id);
  191. Status GetAllocatedGraphId(const std::string &var_name, uint32_t &graph_id);
  192. void RemoveAllocatedGraphId(const std::string &var_name);
  193. const uint64_t &SessionId() const;
  194. const uint32_t &DeviceId() const;
  195. const uint64_t &JobId() const;
  196. int64_t GetVarMemSize(rtMemType_t memory_type);
  197. bool IsVarExist(const std::string &var_name, const ge::GeTensorDesc &tensor_desc);
  198. bool IsVarExist(const std::string &var_name);
  199. bool IsVarAddr(const int64_t &offset);
  200. rtMemType_t GetVarMemType(const int64_t &offset);
  201. uint8_t *GetVarMemoryBase(rtMemType_t memory_type);
  202. uint8_t *GetVarMemoryAddr(uint8_t *logic_addr, rtMemType_t memory_type);
  203. Status GetAllVariables(std::map<std::string, GeTensorDesc> &all_variables);
  204. private:
  205. uint32_t version_;
  206. uint64_t session_id_;
  207. uint32_t device_id_;
  208. uint64_t job_id_;
  209. size_t graph_mem_max_size_;
  210. size_t var_mem_max_size_;
  211. size_t var_mem_logic_base_;
  212. size_t use_max_mem_size_;
  213. std::unique_ptr<ge::VarResource> var_resource_;
  214. map<rtMemType_t, MemResource *> mem_resource_map_;
  215. mutable std::recursive_mutex mutex_;
  216. Status ParseMemoryMallocSize(std::string &memory_size, size_t &my_size);
  217. Status GetTotalMemorySize(size_t &total_mem_size);
  218. };
  219. class VarManagerPool {
  220. public:
  221. virtual ~VarManagerPool();
  222. static VarManagerPool &Instance();
  223. VarManager *GetVarManager(uint64_t session_id);
  224. void RemoveVarManager(uint64_t session_id);
  225. void Destory() noexcept;
  226. ge::Status Init() const;
  227. private:
  228. VarManagerPool() = default;
  229. std::mutex var_manager_mutex_;
  230. map<uint64_t, VarManager *> var_manager_map_;
  231. };
  232. } // namespace ge
  233. #endif // GE_GRAPH_MANAGER_GRAPH_VAR_MANAGER_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示