You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 41 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <gmock/gmock.h>
  18. #define private public
  19. #define protected public
  20. #include "graph/utils/graph_utils.h"
  21. #include "common/profiling/profiling_manager.h"
  22. #include "graph/load/model_manager/davinci_model.h"
  23. #include "graph/manager/graph_var_manager.h"
  24. using namespace std;
  25. namespace ge {
  26. extern OpDescPtr CreateOpDesc(string name, string type);
  27. class DModelListener : public ModelListener {
  28. public:
  29. DModelListener(){};
  30. uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<ge::Tensor> &outputs) {
  31. return 0;
  32. }
  33. };
  34. shared_ptr<ModelListener> g_local_call_back(new DModelListener());
  35. class UtestDavinciModel : public testing::Test {
  36. protected:
  37. void SetUp() {}
  38. void TearDown() {}
  39. };
  40. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  41. return 0;
  42. }
  43. TEST_F(UtestDavinciModel, init_success) {
  44. DavinciModel model(0, nullptr);
  45. VarManager::Instance(0)->Init(0, 0, 0, 0);
  46. map<string, string> options;
  47. options[GRAPH_MEMORY_MAX_SIZE] = "1048576";
  48. VarManager::Instance(0)->SetMemoryMallocSize(options);
  49. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  50. ProfilingManager::Instance().is_load_profiling_ = true;
  51. GeModelPtr ge_model = make_shared<GeModel>();
  52. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  53. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  54. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  55. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  56. ge_model->SetModelTaskDef(model_task_def);
  57. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  58. TensorUtils::SetSize(tensor, 512);
  59. {
  60. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  61. op_desc->AddInputDesc(tensor);
  62. op_desc->AddOutputDesc(tensor);
  63. op_desc->SetInputOffset({1024});
  64. op_desc->SetOutputOffset({1024});
  65. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  66. }
  67. {
  68. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  69. op_desc->AddInputDesc(tensor);
  70. op_desc->AddOutputDesc(tensor);
  71. op_desc->SetInputOffset({1024});
  72. op_desc->SetOutputOffset({1024});
  73. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  74. domi::TaskDef *task_def = model_task_def->add_task();
  75. task_def->set_stream_id(0);
  76. task_def->set_type(RT_MODEL_TASK_KERNEL);
  77. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  78. kernel_def->set_stub_func("stub_func");
  79. kernel_def->set_args_size(64);
  80. string args(64, '1');
  81. kernel_def->set_args(args.data(), 64);
  82. domi::KernelContext *context = kernel_def->mutable_context();
  83. context->set_op_index(op_desc->GetId());
  84. context->set_kernel_type(2); // ccKernelType::TE
  85. uint16_t args_offset[9] = {0};
  86. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  87. }
  88. {
  89. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  90. op_desc->AddInputDesc(tensor);
  91. op_desc->AddOutputDesc(tensor);
  92. op_desc->SetInputOffset({1024});
  93. op_desc->SetOutputOffset({5120});
  94. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  95. domi::TaskDef *task_def = model_task_def->add_task();
  96. task_def->set_stream_id(0);
  97. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  98. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  99. memcpy_async->set_src(1024);
  100. memcpy_async->set_dst(5120);
  101. memcpy_async->set_dst_max(512);
  102. memcpy_async->set_count(1);
  103. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  104. memcpy_async->set_op_index(op_desc->GetId());
  105. }
  106. {
  107. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  108. op_desc->AddInputDesc(tensor);
  109. op_desc->SetInputOffset({5120});
  110. op_desc->SetSrcName( { "memcpy" } );
  111. op_desc->SetSrcIndex( { 0 } );
  112. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  113. }
  114. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  115. EXPECT_EQ(model.Init(), SUCCESS);
  116. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  117. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  118. EXPECT_EQ(model.task_list_.size(), 2);
  119. OutputData output_data;
  120. vector<ge::Tensor> outputs;
  121. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  122. EXPECT_EQ(output_data.blobs.size(), 1);
  123. EXPECT_EQ(outputs.size(), 1);
  124. ProfilingManager::Instance().is_load_profiling_ = false;
  125. }
  126. TEST_F(UtestDavinciModel, CheckCapability) {
  127. DavinciModel model(0, nullptr);
  128. bool is_support = false;
  129. (void)model.CheckCapability(FEATURE_TYPE_MEMORY, MEMORY_INFO_TS_4G_LIMITED, is_support);
  130. }
  131. TEST_F(UtestDavinciModel, init_data_op) {
  132. DavinciModel model(0, nullptr);
  133. model.ge_model_ = make_shared<GeModel>();
  134. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  135. model.runtime_param_.mem_size = 5120000;
  136. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  137. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  138. TensorUtils::SetSize(tensor, 512);
  139. OpDescPtr op_input = CreateOpDesc("data", DATA);
  140. op_input->AddInputDesc(tensor);
  141. op_input->AddOutputDesc(tensor);
  142. op_input->SetInputOffset({1024});
  143. op_input->SetOutputOffset({1024});
  144. NodePtr node_input = graph->AddNode(op_input);
  145. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  146. op_output->AddInputDesc(tensor);
  147. op_output->SetInputOffset({1024});
  148. op_output->SetSrcName( { "data" } );
  149. op_output->SetSrcIndex( { 0 } );
  150. NodePtr node_output = graph->AddNode(op_output);
  151. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  152. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  153. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  154. EXPECT_EQ(model.op_list_.size(), 2);
  155. }
  156. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  157. DavinciModel model(0, nullptr);
  158. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  159. model.runtime_param_.mem_size = 5120000;
  160. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  161. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  162. TensorUtils::SetSize(tensor, 512);
  163. OpDescPtr op_input = CreateOpDesc("data", DATA);
  164. op_input->AddInputDesc(tensor);
  165. op_input->AddOutputDesc(tensor);
  166. op_input->SetInputOffset({1024});
  167. op_input->SetOutputOffset({1024});
  168. NodePtr node = graph->AddNode(op_input);
  169. uint32_t data_op_index = 0;
  170. map<uint32_t, OpDescPtr> data_by_index;
  171. set<const void *> input_outside_addrs;
  172. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  173. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  174. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  175. EXPECT_EQ(data_op_index, 0);
  176. EXPECT_TRUE(data_by_index.empty());
  177. }
  178. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  179. DavinciModel model(0, nullptr);
  180. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  181. model.runtime_param_.mem_size = 5120000;
  182. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  183. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  184. TensorUtils::SetSize(tensor, 512);
  185. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  186. op_output->AddInputDesc(tensor);
  187. op_output->SetInputOffset({1024});
  188. op_output->SetSrcName( { "data" } );
  189. op_output->SetSrcIndex( { 0 } );
  190. NodePtr node = graph->AddNode(op_output);
  191. std::vector<OpDescPtr> output_op_list;
  192. set<const void *> output_outside_addrs;
  193. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  194. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  195. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  196. EXPECT_TRUE(output_op_list.empty());
  197. }
  198. TEST_F(UtestDavinciModel, init_unknown) {
  199. DavinciModel model(0, nullptr);
  200. model.SetKnownNode(true);
  201. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  202. GeModelPtr ge_model = make_shared<GeModel>();
  203. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  204. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  205. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  206. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  207. ge_model->SetModelTaskDef(model_task_def);
  208. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  209. TensorUtils::SetSize(tensor, 512);
  210. OpDescPtr op_input = CreateOpDesc("data", DATA);
  211. op_input->AddInputDesc(tensor);
  212. op_input->AddOutputDesc(tensor);
  213. op_input->SetInputOffset({1024});
  214. op_input->SetOutputOffset({1024});
  215. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  216. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  217. op_kernel->AddInputDesc(tensor);
  218. op_kernel->AddOutputDesc(tensor);
  219. op_kernel->SetInputOffset({1024});
  220. op_kernel->SetOutputOffset({1024});
  221. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  222. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  223. op_memcpy->AddInputDesc(tensor);
  224. op_memcpy->AddOutputDesc(tensor);
  225. op_memcpy->SetInputOffset({1024});
  226. op_memcpy->SetOutputOffset({5120});
  227. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  228. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  229. op_output->AddInputDesc(tensor);
  230. op_output->SetInputOffset({5120});
  231. op_output->SetSrcName( { "memcpy" } );
  232. op_output->SetSrcIndex( { 0 } );
  233. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  234. domi::TaskDef *task_def1 = model_task_def->add_task();
  235. task_def1->set_stream_id(0);
  236. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  237. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  238. kernel_def->set_stub_func("stub_func");
  239. kernel_def->set_args_size(64);
  240. string args(64, '1');
  241. kernel_def->set_args(args.data(), 64);
  242. domi::KernelContext *context = kernel_def->mutable_context();
  243. context->set_op_index(1);
  244. context->set_kernel_type(2); // ccKernelType::TE
  245. uint16_t args_offset[9] = {0};
  246. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  247. domi::TaskDef *task_def2 = model_task_def->add_task();
  248. task_def2->set_stream_id(0);
  249. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  250. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  251. memcpy_async->set_src(1024);
  252. memcpy_async->set_dst(5120);
  253. memcpy_async->set_dst_max(512);
  254. memcpy_async->set_count(1);
  255. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  256. memcpy_async->set_op_index(2);
  257. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  258. ProfilingManager::Instance().is_load_profiling_ = true;
  259. EXPECT_EQ(model.Init(), SUCCESS);
  260. ProfilingManager::Instance().is_load_profiling_ = false;
  261. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  262. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  263. EXPECT_EQ(model.task_list_.size(), 2);
  264. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  265. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  266. vector<string> out_shape_info;
  267. model.GetModelAttr(out_shape_info);
  268. vector<InputOutputDescInfo> input_descs;
  269. vector<InputOutputDescInfo> output_descs;
  270. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  271. int32_t virtual_addr = 0;
  272. const vector<void *> inputs = { &virtual_addr };
  273. const vector<void *> outputs = { &virtual_addr };
  274. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  275. }
  276. TEST_F(UtestDavinciModel, Init_variable_op) {
  277. DavinciModel model(0, g_local_call_back);
  278. model.ge_model_ = make_shared<GeModel>();
  279. model.runtime_param_.mem_size = 51200;
  280. model.runtime_param_.mem_base = (uint8_t *)malloc(model.runtime_param_.mem_size);
  281. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  282. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  283. TensorUtils::SetSize(tensor, 512);
  284. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  285. var1->AddInputDesc(tensor);
  286. var1->AddOutputDesc(tensor);
  287. var1->SetInputOffset({1024});
  288. var1->SetOutputOffset({1024});
  289. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  290. graph->AddNode(var1);
  291. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  292. var2->AddInputDesc(tensor);
  293. var2->AddOutputDesc(tensor);
  294. var2->SetInputOffset({1024});
  295. var2->SetOutputOffset({1024});
  296. graph->AddNode(var2);
  297. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  298. EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
  299. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  300. OutputData output_data;
  301. EXPECT_FALSE(model.has_output_node_);
  302. EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
  303. EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
  304. free(model.runtime_param_.mem_base);
  305. model.runtime_param_.mem_base = nullptr;
  306. }
  307. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  308. DavinciModel model(0, nullptr);
  309. model.ge_model_ = make_shared<GeModel>();
  310. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  311. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  312. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  313. op_output->AddInputDesc(tensor);
  314. op_output->SetInputOffset({1024});
  315. NodePtr node_output = graph->AddNode(op_output);
  316. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  317. }
  318. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  319. DavinciModel model(0, nullptr);
  320. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  321. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  322. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  323. data1->AddInputDesc(shape_desc);
  324. data1->AddOutputDesc(shape_desc);
  325. NodePtr data1_node = graph->AddNode(data1);
  326. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  327. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  328. case_node->AddInputDesc(tensor);
  329. case_node->AddOutputDesc(tensor);
  330. NodePtr case1_node = graph->AddNode(case_node);
  331. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  332. output->AddInputDesc(tensor);
  333. output->SetSrcName( { "case1" } );
  334. output->SetSrcIndex( { 0 } );
  335. NodePtr output_node = graph->AddNode(output);
  336. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  337. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  338. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  339. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  340. model.is_getnext_sink_dynamic_ = false;
  341. model.is_online_infer_dynamic_ = true;
  342. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  343. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  344. EXPECT_EQ(ret, SUCCESS);
  345. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  346. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  347. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  348. EXPECT_EQ(ret, SUCCESS);
  349. }
  350. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  351. DavinciModel model(0, nullptr);
  352. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  353. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  354. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  355. data1->AddInputDesc(shape_desc);
  356. data1->AddOutputDesc(shape_desc);
  357. NodePtr data1_node = graph->AddNode(data1);
  358. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  359. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  360. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  361. shape_node->AddInputDesc(in_tensor);
  362. shape_node->AddOutputDesc(out_tensor);
  363. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  364. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  365. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  366. output->AddInputDesc(tensor);
  367. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  368. output->SetSrcIndex( { 0, 1 } );
  369. NodePtr output_node = graph->AddNode(output);
  370. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  371. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  372. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  373. model.is_getnext_sink_dynamic_ = true;
  374. model.is_online_infer_dynamic_ = false;
  375. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  376. EXPECT_EQ(ret, SUCCESS);
  377. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  378. model.runtime_param_.mem_size = 4;
  379. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  380. EXPECT_EQ(ret, SUCCESS);
  381. }
  382. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  383. DavinciModel model(0, nullptr);
  384. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  385. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  386. model.runtime_param_.mem_size = 5120000;
  387. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  388. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  389. TensorUtils::SetSize(tensor, 512);
  390. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  391. op_desc->AddInputDesc(tensor);
  392. op_desc->AddOutputDesc(tensor);
  393. op_desc->SetInputOffset({1024});
  394. op_desc->SetOutputOffset({1024});
  395. NodePtr node = graph->AddNode(op_desc);
  396. GeAttrValue::NAMED_ATTRS aipp_attr;
  397. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  398. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  399. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  400. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  401. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  402. AippConfigInfo aipp_info;
  403. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  404. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  405. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  406. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  407. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  408. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  409. EXPECT_EQ(model.op_list_.size(), 1);
  410. }
  411. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  412. DavinciModel model(0, nullptr);
  413. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  414. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  415. model.runtime_param_.mem_size = 5120000;
  416. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  417. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  418. TensorUtils::SetSize(tensor, 512);
  419. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  420. op_desc->AddInputDesc(tensor);
  421. op_desc->AddOutputDesc(tensor);
  422. op_desc->SetInputOffset({1024});
  423. op_desc->SetOutputOffset({1024});
  424. NodePtr node = graph->AddNode(op_desc);
  425. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  426. InputAippType aipp_type;
  427. size_t aipp_index = 0;
  428. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  429. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  430. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  431. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  432. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  433. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  434. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  435. EXPECT_EQ(model.op_list_.size(), 1);
  436. }
  437. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  438. DavinciModel model(0, nullptr);
  439. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  440. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  441. model.runtime_param_.mem_size = 5120000;
  442. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  443. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  444. TensorUtils::SetSize(tensor, 512);
  445. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  446. op_desc->AddInputDesc(tensor);
  447. op_desc->AddOutputDesc(tensor);
  448. op_desc->SetInputOffset({1024});
  449. op_desc->SetOutputOffset({1024});
  450. NodePtr node = graph->AddNode(op_desc); // op_index 0
  451. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  452. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  453. InputAippType aipp_type;
  454. size_t aipp_index = 0;
  455. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  456. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  457. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  458. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  459. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  460. EXPECT_EQ(model.op_list_.size(), 1);
  461. }
  462. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  463. DavinciModel model(0, nullptr);
  464. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  465. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  466. model.runtime_param_.mem_size = 5120000;
  467. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  468. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  469. TensorUtils::SetSize(tensor, 512);
  470. {
  471. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  472. op_desc->AddInputDesc(tensor);
  473. op_desc->AddOutputDesc(tensor);
  474. op_desc->SetInputOffset({1024});
  475. op_desc->SetOutputOffset({1024});
  476. NodePtr node = graph->AddNode(op_desc); // op_index 0
  477. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  478. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  479. }
  480. {
  481. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  482. op_desc->AddInputDesc(tensor);
  483. op_desc->AddOutputDesc(tensor);
  484. op_desc->SetInputOffset({1024});
  485. op_desc->SetOutputOffset({1024});
  486. NodePtr node = graph->AddNode(op_desc); // op_index 1
  487. }
  488. InputAippType aipp_type;
  489. size_t aipp_index = 0;
  490. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  491. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  492. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  493. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  494. EXPECT_EQ(aipp_index, 1);
  495. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  496. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  497. EXPECT_EQ(model.op_list_.size(), 2);
  498. }
  499. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  500. DavinciModel model(0, nullptr);
  501. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  502. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  503. model.runtime_param_.mem_size = 5120000;
  504. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  505. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  506. TensorUtils::SetSize(tensor, 512);
  507. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  508. op_desc->AddInputDesc(tensor);
  509. op_desc->AddOutputDesc(tensor);
  510. op_desc->SetInputOffset({1024});
  511. op_desc->SetOutputOffset({1024});
  512. NodePtr node = graph->AddNode(op_desc); // op_index 0
  513. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  514. InputAippType aipp_type;
  515. size_t aipp_index = 0;
  516. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  517. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  518. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  519. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  520. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  521. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  522. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  523. EXPECT_EQ(model.op_list_.size(), 1);
  524. }
  525. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  526. DavinciModel model(0, nullptr);
  527. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  528. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  529. model.runtime_param_.mem_size = 5120000;
  530. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  531. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  532. TensorUtils::SetSize(tensor, 512);
  533. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  534. op_desc->AddInputDesc(tensor);
  535. op_desc->AddOutputDesc(tensor);
  536. op_desc->SetInputOffset({1024});
  537. op_desc->SetOutputOffset({1024});
  538. NodePtr node = graph->AddNode(op_desc); // op_index 0
  539. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  540. InputAippType aipp_type;
  541. size_t aipp_index = 0;
  542. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  543. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  544. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  545. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  546. EXPECT_EQ(model.op_list_.size(), 1);
  547. }
  548. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  549. DavinciModel model(0, nullptr);
  550. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  551. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  552. model.runtime_param_.mem_size = 5120000;
  553. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  554. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  555. TensorUtils::SetSize(tensor, 512);
  556. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  557. op_desc->AddInputDesc(tensor);
  558. op_desc->AddOutputDesc(tensor);
  559. op_desc->SetInputOffset({1024});
  560. op_desc->SetOutputOffset({1024});
  561. NodePtr node = graph->AddNode(op_desc); // op_index 0
  562. vector<string> inputs = {};
  563. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  564. vector<string> outputs = {};
  565. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  566. OriginInputInfo orig_input_info;
  567. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  568. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  569. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  570. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  571. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  572. EXPECT_EQ(model.op_list_.size(), 1);
  573. }
  574. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  575. DavinciModel model(0, nullptr);
  576. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  577. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  578. model.runtime_param_.mem_size = 5120000;
  579. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  580. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  581. TensorUtils::SetSize(tensor, 512);
  582. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  583. op_desc->AddInputDesc(tensor);
  584. op_desc->AddOutputDesc(tensor);
  585. op_desc->SetInputOffset({1024});
  586. op_desc->SetOutputOffset({1024});
  587. NodePtr node = graph->AddNode(op_desc); // op_index 0
  588. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  589. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  590. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  591. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  592. OriginInputInfo orig_input_info;
  593. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  594. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  595. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  596. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  597. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  598. EXPECT_EQ(model.op_list_.size(), 1);
  599. }
  600. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  601. DavinciModel model(0, nullptr);
  602. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  603. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  604. model.runtime_param_.mem_size = 5120000;
  605. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  606. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  607. TensorUtils::SetSize(tensor, 512);
  608. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  609. op_desc->AddInputDesc(tensor);
  610. op_desc->AddOutputDesc(tensor);
  611. op_desc->SetInputOffset({1024});
  612. op_desc->SetOutputOffset({1024});
  613. NodePtr node = graph->AddNode(op_desc); // op_index 0
  614. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  615. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  616. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  617. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  618. OriginInputInfo orig_input_info;
  619. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  620. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  621. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  622. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  623. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  624. EXPECT_EQ(model.op_list_.size(), 1);
  625. }
  626. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  627. DavinciModel model(0, nullptr);
  628. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  629. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  630. model.runtime_param_.mem_size = 5120000;
  631. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  632. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  633. TensorUtils::SetSize(tensor, 512);
  634. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  635. op_desc->AddInputDesc(tensor);
  636. op_desc->AddOutputDesc(tensor);
  637. op_desc->SetInputOffset({1024});
  638. op_desc->SetOutputOffset({1024});
  639. NodePtr node = graph->AddNode(op_desc); // op_index 0
  640. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  641. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  642. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  643. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  644. vector<InputOutputDims> input_dims;
  645. vector<InputOutputDims> output_dims;
  646. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  647. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  648. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  649. EXPECT_EQ(input_dims.size(), 1);
  650. EXPECT_EQ(output_dims.size(), 1);
  651. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  652. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  653. EXPECT_EQ(model.op_list_.size(), 1);
  654. }
  655. // test label_set_task Init
  656. TEST_F(UtestDavinciModel, label_task_success) {
  657. VarManager::Instance(0)->Init(0, 0, 0, 0);
  658. map<string, string> options;
  659. options[GRAPH_MEMORY_MAX_SIZE] = "1048576";
  660. VarManager::Instance(0)->SetMemoryMallocSize(options);
  661. DavinciModel model(0, nullptr);
  662. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  663. GeModelPtr ge_model = make_shared<GeModel>();
  664. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  665. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  666. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  667. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  668. ge_model->SetModelTaskDef(model_task_def);
  669. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  670. TensorUtils::SetSize(tensor, 64);
  671. {
  672. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  673. op_desc->AddInputDesc(tensor);
  674. op_desc->SetInputOffset({1024});
  675. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  676. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  677. domi::TaskDef *task_def1 = model_task_def->add_task();
  678. task_def1->set_stream_id(0);
  679. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  680. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  681. label_task_def->set_op_index(op_desc->GetId());
  682. label_task_def->set_label_max(2);
  683. }
  684. {
  685. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  686. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  687. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  688. domi::TaskDef *task_def1 = model_task_def->add_task();
  689. task_def1->set_stream_id(0);
  690. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  691. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  692. label_task_def->set_op_index(op_desc->GetId());
  693. }
  694. {
  695. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  696. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  697. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  698. domi::TaskDef *task_def2 = model_task_def->add_task();
  699. task_def2->set_stream_id(0);
  700. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  701. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  702. label_task_def->set_op_index(op_desc->GetId());
  703. }
  704. {
  705. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  706. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  707. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  708. domi::TaskDef *task_def1 = model_task_def->add_task();
  709. task_def1->set_stream_id(0);
  710. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  711. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  712. label_task_def->set_op_index(op_desc->GetId());
  713. }
  714. {
  715. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  716. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  717. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  718. domi::TaskDef *task_def1 = model_task_def->add_task();
  719. task_def1->set_stream_id(0);
  720. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  721. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  722. label_task_def->set_op_index(op_desc->GetId());
  723. }
  724. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  725. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  726. EXPECT_EQ(model.Init(), SUCCESS);
  727. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  728. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  729. EXPECT_EQ(model.task_list_.size(), 5);
  730. }
  731. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  732. DavinciModel model(0, nullptr);
  733. model.ge_model_ = make_shared<GeModel>();
  734. model.input_queue_ids_.emplace_back(0);
  735. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  736. EXPECT_EQ(model.input_data_info_.size(), 0);
  737. ZeroCopyOffset zero_copy_offset;
  738. model.input_data_info_[0] = zero_copy_offset;
  739. model.output_queue_ids_.emplace_back(0);
  740. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  741. EXPECT_EQ(model.output_data_info_.size(), 0);
  742. model.output_data_info_[0] = zero_copy_offset;
  743. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  744. EXPECT_EQ(model.active_stream_list_.size(), 0);
  745. }
  746. TEST_F(UtestDavinciModel, Sink_model_profile) {
  747. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  748. ProfileInfo profile;
  749. profile.fusion_info.op_name = "relu";
  750. DavinciModel model(0, nullptr);
  751. model.profile_list_.emplace_back(profile);
  752. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  753. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  754. model.profiler_report_op_info_ = op_info;
  755. model.SinkModelProfile();
  756. }
  757. TEST_F(UtestDavinciModel, Sink_time_profile) {
  758. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  759. DavinciModel model(0, nullptr);
  760. InputData current_data;
  761. model.SinkTimeProfile(current_data);
  762. }
  763. class ClassTest {
  764. public:
  765. virtual ~ClassTest() {}
  766. virtual int func0() {
  767. return 0;
  768. }
  769. virtual int func1(int a) {
  770. return a;
  771. }
  772. virtual int func2(int a, int b) {
  773. return a + b;
  774. }
  775. virtual int func3(int a, int b) const {
  776. return a - b;
  777. }
  778. };
  779. class MockTest : public ClassTest {
  780. public:
  781. MOCK_METHOD0(func0, int());
  782. MOCK_METHOD1(func1, int(int a));
  783. MOCK_METHOD2(func2, int(int a, int b));
  784. MOCK_CONST_METHOD2(func3, int(int a, int b));
  785. };
  786. TEST_F(UtestDavinciModel, simple_test_gmock) {
  787. MockTest mock_stub;
  788. ON_CALL(mock_stub, func0()).WillByDefault(testing::Return(250));
  789. EXPECT_EQ(mock_stub.func0(), 250);
  790. EXPECT_EQ(mock_stub.func0(), 250);
  791. EXPECT_EQ(mock_stub.func0(), 250);
  792. EXPECT_CALL(mock_stub, func1(testing::_)).Times(2).WillOnce(testing::Return(1024)).WillOnce(testing::Return(250));
  793. EXPECT_EQ(mock_stub.func1(1), 1024);
  794. EXPECT_EQ(mock_stub.func1(1), 250);
  795. EXPECT_CALL(mock_stub, func2(testing::_, 5)).Times(3).WillRepeatedly(testing::Return(1023));
  796. EXPECT_EQ(mock_stub.func2(1, 5), 1023);
  797. EXPECT_EQ(mock_stub.func2(2, 5), 1023);
  798. EXPECT_EQ(mock_stub.func2(3, 5), 1023);
  799. }
  800. TEST_F(UtestDavinciModel, NnExecute) {
  801. VarManager::Instance(0)->Init(0, 0, 0, 0);
  802. map<string, string> options;
  803. options[GRAPH_MEMORY_MAX_SIZE] = "1048576";
  804. VarManager::Instance(0)->SetMemoryMallocSize(options);
  805. DavinciModel model(0, nullptr);
  806. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  807. ProfilingManager::Instance().is_load_profiling_ = true;
  808. GeModelPtr ge_model = make_shared<GeModel>();
  809. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  810. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  811. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  812. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  813. ge_model->SetModelTaskDef(model_task_def);
  814. GeTensorDesc tensor(GeShape({1,4,128,128}), FORMAT_NCHW, DT_FLOAT);
  815. TensorUtils::SetSize(tensor, 512);
  816. {
  817. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  818. op_desc->AddInputDesc(tensor);
  819. op_desc->AddOutputDesc(tensor);
  820. op_desc->SetInputOffset({1024});
  821. op_desc->SetOutputOffset({1024});
  822. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  823. }
  824. {
  825. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  826. op_desc->AddInputDesc(tensor);
  827. op_desc->AddOutputDesc(tensor);
  828. op_desc->SetInputOffset({1024});
  829. op_desc->SetOutputOffset({5120});
  830. NodePtr node = graph->AddNode(op_desc);
  831. domi::TaskDef *task_def = model_task_def->add_task();
  832. task_def->set_stream_id(0);
  833. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  834. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  835. memcpy_async->set_src(1024);
  836. memcpy_async->set_dst(5120);
  837. memcpy_async->set_dst_max(512);
  838. memcpy_async->set_count(1);
  839. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  840. memcpy_async->set_op_index(op_desc->GetId());
  841. }
  842. {
  843. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  844. op_desc->AddInputDesc(tensor);
  845. op_desc->SetInputOffset({5120});
  846. op_desc->SetSrcName( { "memcpy" } );
  847. op_desc->SetSrcIndex( { 0 } );
  848. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  849. }
  850. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  851. EXPECT_EQ(model.Init(), SUCCESS);
  852. rtStream_t stream = nullptr;
  853. InputData input_data;
  854. OutputData output_data;
  855. vector<ge::Tensor> outputs;
  856. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  857. EXPECT_EQ(output_data.blobs.size(), 1);
  858. EXPECT_EQ(outputs.size(), 1);
  859. input_data.blobs = output_data.blobs;
  860. EXPECT_EQ(input_data.blobs.size(), 1);
  861. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  862. ProfilingManager::Instance().device_id_.emplace_back(0);
  863. model.task_list_.resize(1);
  864. EXPECT_EQ(model.NnExecute(stream, false, input_data, output_data), SUCCESS);
  865. input_data.blobs[0].length = 128;
  866. EXPECT_NE(model.NnExecute(stream, false, input_data, output_data), SUCCESS);
  867. }
  868. TEST_F(UtestDavinciModel, update_io_addr_success) {
  869. DavinciModel model(0, nullptr);
  870. uint32_t task_id = 1;
  871. uint32_t stream_id = 2;
  872. model.fixed_mem_base_ = 0x22;
  873. model.mem_base_ = reinterpret_cast<uint8_t *>(&task_id);
  874. OpDescInfo op_desc_info = {"Save", "Save", 1, 2, {FORMAT_NCHW}, {{1}}, {DT_FLOAT}, {nullptr}, {2},
  875. {FORMAT_NCHW}, {{1}}, {DT_FLOAT}, {nullptr}, {2}};
  876. model.exception_dumper_.op_desc_info_ = { op_desc_info };
  877. vector<void *> io_addr = {nullptr, nullptr};
  878. model.UpdateOpIOAddrs(task_id, stream_id, io_addr);
  879. }
  880. TEST_F(UtestDavinciModel, get_total_memsize_exclude_zero_copy) {
  881. DavinciModel model(0, nullptr);
  882. model.runtime_param_.mem_size = 1024;
  883. model.runtime_param_.zero_copy_size = 2048;
  884. int64_t total_useful_size = 0;
  885. EXPECT_EQ(model.GetTotalMemSizeExcludeZeroCopy(total_useful_size), FAILED);
  886. EXPECT_EQ(total_useful_size, 0);
  887. model.runtime_param_.zero_copy_size = 512;
  888. EXPECT_EQ(model.GetTotalMemSizeExcludeZeroCopy(total_useful_size), SUCCESS);
  889. EXPECT_EQ(total_useful_size, 512);
  890. }
  891. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示