You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shape_inference_engine.cc 16 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/worker/shape_inference_engine.h"
  17. #include "graph/shape_refiner.h"
  18. #include "graph/utils/node_utils.h"
  19. #include "graph/utils/tensor_utils.h"
  20. #include "graph/utils/type_utils.h"
  21. #include "common/math/math_util.h"
  22. #include "hybrid/node_executor/node_executor.h"
  23. namespace ge {
  24. namespace {
  25. const int kAlignment = 32;
  26. }
  27. namespace hybrid {
  28. ShapeInferenceEngine::ShapeInferenceEngine(GraphExecutionContext *execution_context, SubgraphContext *subgraph_context)
  29. : execution_context_(execution_context),
  30. subgraph_context_(subgraph_context) {
  31. }
  32. Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
  33. // Wait for all input shape become valid
  34. GE_CHK_STATUS_RET_NOLOG(node_state.GetShapeInferenceState().AwaitShapesReady(*execution_context_));
  35. auto &node_item = *node_state.GetNodeItem();
  36. // Wait for "const input nodes" if node's shape inference function requires any.
  37. // Even if output shape is static, there are cases that the const-input will be used in OpTiling and Execution
  38. GE_CHK_STATUS_RET_NOLOG(AwaitDependentNodes(node_state));
  39. if (node_item.is_output_shape_static && !node_item.is_need_force_infershape) {
  40. return SUCCESS;
  41. }
  42. const auto &guard = node_item.MutexGuard("InferShape");
  43. if (node_item.fused_subgraph != nullptr) {
  44. GE_CHK_STATUS_RET_NOLOG(InferShapeForSubgraph(node_item, *node_item.fused_subgraph));
  45. GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item));
  46. return SUCCESS;
  47. }
  48. (void)guard;
  49. // Skip shape inference for node of type DEPEND_COMPUTE
  50. if (node_item.shape_inference_type == DEPEND_COMPUTE) {
  51. GELOGD("[%s] Skipping node with unknown shape type DEPEND_COMPUTE", node_item.NodeName().c_str());
  52. return SUCCESS;
  53. }
  54. // Clear shape range in case shape inference func forgot to do it
  55. if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE) {
  56. // in case InferFunc forgot to reset output shape
  57. for (auto &output_desc : node_item.op_desc->GetAllOutputsDescPtr()) {
  58. output_desc->SetShape(GeShape({UNKNOWN_DIM_NUM}));
  59. }
  60. }
  61. // Do shape inference
  62. GELOGD("[%s] Start to invoke InferShapeAndType", node_item.NodeName().c_str());
  63. if (node_state.GetType() != DATA_TYPE && node_state.GetType() != AIPP_DATA_TYPE) {
  64. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start");
  65. GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true),
  66. "[Invoke][InferShapeAndType] for %s failed.", node_item.NodeName().c_str());
  67. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End");
  68. }
  69. // update output tensor sizes after shape inference
  70. // error if shape is still unknown and not of type DEPEND_SHAPE_RANGE
  71. RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] Start");
  72. GE_CHK_STATUS_RET_NOLOG(CalcOutputTensorSizes(node_item, node_item.shape_inference_type == DEPEND_SHAPE_RANGE));
  73. RECORD_COMPILE_EVENT(execution_context_, node_item.NodeName().c_str(), "[CalcOpRunningParam] End");
  74. GELOGD("[%s] [HybridTrace] After shape inference. Node = %s",
  75. node_item.NodeName().c_str(),
  76. node_item.DebugString().c_str());
  77. GELOGD("[%s] InferShapeAndType finished successfully.", node_item.NodeName().c_str());
  78. return SUCCESS;
  79. }
  80. Status ShapeInferenceEngine::AwaitDependentNodes(NodeState &node_state) {
  81. auto &node_item = *node_state.GetNodeItem();
  82. for (auto &src_node : node_item.dependents_for_shape_inference) {
  83. GELOGI("[%s] Start to wait for data dependent node: %s",
  84. node_item.NodeName().c_str(),
  85. src_node->GetName().c_str());
  86. RECORD_SHAPE_INFERENCE_EVENT(execution_context_,
  87. node_item.NodeName().c_str(),
  88. "[AwaitNodeDone] [%s] Start",
  89. src_node->GetName().c_str());
  90. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node), "[%s] Await node failed.", src_node->GetName().c_str());
  91. RECORD_SHAPE_INFERENCE_EVENT(execution_context_,
  92. node_item.NodeName().c_str(),
  93. "[AwaitNodeDone] [%s] End",
  94. src_node->GetName().c_str());
  95. GELOGI("[%s] Done waiting node.", src_node->GetName().c_str());
  96. }
  97. return SUCCESS;
  98. }
  99. Status ShapeInferenceEngine::PropagateOutputShapes(NodeState &node_state) {
  100. auto &node_item = *node_state.GetNodeItem();
  101. if (node_item.is_output_shape_static) {
  102. return SUCCESS;
  103. }
  104. // output shape will not be valid until compute is done.
  105. bool shape_is_future =
  106. node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE;
  107. GELOGD("[%s] Start to propagate output shapes. shape_type = %d",
  108. node_item.NodeName().c_str(),
  109. node_item.shape_inference_type);
  110. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[PropagateOutputShapes] Start");
  111. // propagate each output
  112. const auto &guard = node_item.MutexGuard("PropagateOutputShapes");
  113. for (int i = 0; i < node_item.num_outputs; ++i) {
  114. auto output_desc = node_item.MutableOutputDesc(i);
  115. auto &output_nodes = node_item.outputs[i];
  116. // propagate output to all sub-inputs
  117. for (auto &dst_input_index_and_node : output_nodes) {
  118. auto &dst_node_item = dst_input_index_and_node.second;
  119. auto dst_node_state = subgraph_context_->GetOrCreateNodeState(dst_node_item);
  120. GE_CHECK_NOTNULL(dst_node_state);
  121. GELOGI("[%s] Update dst node [%s], input index = %d",
  122. node_item.NodeName().c_str(),
  123. dst_node_item->NodeName().c_str(),
  124. dst_input_index_and_node.first);
  125. // in case type 3 and 4, shape will be valid after computing is done
  126. auto &infer_state = dst_node_state->GetShapeInferenceState();
  127. if (shape_is_future) {
  128. ShapeFuture future(&node_state, i, subgraph_context_);
  129. infer_state.UpdateInputShapeFuture(dst_input_index_and_node.first, std::move(future));
  130. } else {
  131. GE_CHK_STATUS_RET_NOLOG(infer_state.UpdateInputShape(dst_input_index_and_node.first, *output_desc));
  132. }
  133. }
  134. }
  135. (void)guard;
  136. RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[PropagateOutputShapes] End");
  137. GELOGD("[%s] Propagating output shapes finished successfully.", node_item.NodeName().c_str());
  138. return SUCCESS;
  139. }
  140. Status ShapeInferenceEngine::InferShapeForSubgraph(const NodeItem &node_item, const FusedSubgraph &fused_subgraph) {
  141. GELOGD("[%s] Start to infer shape by fused subgraph", node_item.NodeName().c_str());
  142. for (auto &it : fused_subgraph.input_mapping) {
  143. auto parent_tensor_desc = node_item.MutableInputDesc(it.first);
  144. GE_CHECK_NOTNULL(parent_tensor_desc);
  145. GELOGD("Start to update shape by input[%d]", it.first);
  146. GELOGD("Update shape to [%s]", parent_tensor_desc->GetShape().ToString().c_str());
  147. GELOGD("Update original shape to [%s]", parent_tensor_desc->GetOriginShape().ToString().c_str());
  148. for (auto &tensor_desc : it.second) {
  149. tensor_desc->SetShape(parent_tensor_desc->GetShape());
  150. tensor_desc->SetOriginShape(parent_tensor_desc->GetOriginShape());
  151. }
  152. }
  153. for (auto &node : fused_subgraph.nodes) {
  154. GELOGD("[%s] Start to invoke InferShapeAndType", node->GetName().c_str());
  155. GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndType(node));
  156. GELOGD("[%s] Done invoking InferShapeAndType", node->GetName().c_str());
  157. GE_CHK_STATUS_RET(UpdatePeerNodeShape(*node),
  158. "[Update][PeerNodeShape] failed for [%s].", node->GetName().c_str());
  159. }
  160. for (auto &it : fused_subgraph.output_mapping) {
  161. int parent_output_idx = it.first;
  162. const auto &op_desc = it.second;
  163. GELOGD("Update parent output[%d] by [%s]", parent_output_idx, op_desc->GetName().c_str());
  164. auto input_desc = op_desc->MutableInputDesc(0);
  165. GE_CHECK_NOTNULL(input_desc);
  166. auto parent_output_tensor_desc = node_item.MutableOutputDesc(parent_output_idx);
  167. GE_CHECK_NOTNULL(parent_output_tensor_desc);
  168. GELOGD("Update shape to [%s]", input_desc->GetShape().ToString().c_str());
  169. GELOGD("Update original shape to [%s]", input_desc->GetOriginShape().ToString().c_str());
  170. parent_output_tensor_desc->SetOriginShape(input_desc->GetOriginShape());
  171. parent_output_tensor_desc->SetShape(input_desc->GetShape());
  172. }
  173. GELOGD("[%s] Done shape inference by subgraph successfully.", node_item.NodeName().c_str());
  174. return SUCCESS;
  175. }
  176. Status ShapeInferenceEngine::UpdatePeerNodeShape(const Node &node) {
  177. auto op_desc = node.GetOpDesc();
  178. for (const auto &out_anchor : node.GetAllOutDataAnchors()) {
  179. auto output_tensor = op_desc->MutableOutputDesc(out_anchor->GetIdx());
  180. for (const auto &peer_anchor : out_anchor->GetPeerInDataAnchors()) {
  181. auto peer_node = peer_anchor->GetOwnerNode();
  182. GE_CHECK_NOTNULL(peer_node);
  183. auto peer_op_desc = peer_node->GetOpDesc();
  184. GE_CHECK_NOTNULL(peer_op_desc);
  185. auto peer_input_desc = peer_op_desc->MutableInputDesc(peer_anchor->GetIdx());
  186. if (peer_input_desc == nullptr) {
  187. GELOGE(GRAPH_FAILED, "[Call][MutableInputDesc] for %s return nullptr.", peer_op_desc->GetName().c_str());
  188. REPORT_CALL_ERROR("E19999", "%s call MutableInputDesc return nullptr.", peer_op_desc->GetName().c_str());
  189. continue;
  190. }
  191. GELOGI("Peer input op desc name is %s, need to flush: shape size is %zu, datatype is %d, original datatype is %d",
  192. peer_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  193. output_tensor->GetShape().GetDimNum(), output_tensor->GetDataType(),
  194. output_tensor->GetOriginDataType());
  195. peer_input_desc->SetOriginShape(output_tensor->GetOriginShape());
  196. peer_input_desc->SetShape(output_tensor->GetShape());
  197. GELOGI("Peer input op desc name is %s, shape size is %zu, datatype is %d, original datatype is %d",
  198. peer_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  199. peer_input_desc->GetShape().GetDimNum(), peer_input_desc->GetDataType(),
  200. peer_input_desc->GetOriginDataType());
  201. }
  202. }
  203. return SUCCESS;
  204. }
  205. Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc,
  206. std::vector<int64_t> &shape,
  207. bool fallback_with_range) {
  208. const auto &tensor_shape = tensor_desc.MutableShape();
  209. if (tensor_shape.IsUnknownShape()) {
  210. if (!fallback_with_range) {
  211. GELOGE(INTERNAL_ERROR,
  212. "[Is][UnknownShape] Output shape is still unknown after shape inference. shape = [%s].",
  213. tensor_shape.ToString().c_str());
  214. REPORT_INNER_ERROR("E19999", "Output shape is still unknown after shape inference. shape = [%s].",
  215. tensor_shape.ToString().c_str());
  216. return INTERNAL_ERROR;
  217. }
  218. GELOGD("Calc output size by range");
  219. std::vector<std::pair<int64_t, int64_t>> shape_range;
  220. GE_CHK_GRAPH_STATUS_RET(tensor_desc.GetShapeRange(shape_range), "Failed to get shape range");
  221. if (shape_range.size() != shape.size()) {
  222. GELOGE(INTERNAL_ERROR, "[Check][Size] Number of shape ranges (%zu) mismatches that of dims (%zu).",
  223. shape_range.size(), shape.size());
  224. REPORT_INNER_ERROR("E19999", "Number of shape ranges (%zu) mismatches that of dims (%zu)",
  225. shape_range.size(), shape.size());
  226. return INTERNAL_ERROR;
  227. }
  228. for (size_t dim_index = 0; dim_index < shape.size(); ++dim_index) {
  229. if (shape[dim_index] == ge::UNKNOWN_DIM) {
  230. shape[dim_index] = shape_range[dim_index].second;
  231. }
  232. }
  233. GELOGD("After canonicalization, shape = [%s], before = [%s]",
  234. GeShape(shape).ToString().c_str(),
  235. tensor_shape.ToString().c_str());
  236. }
  237. return SUCCESS;
  238. }
  239. Status ShapeInferenceEngine::CalcTensorSize(DataType data_type,
  240. const std::vector<int64_t> &shape,
  241. int64_t &tensor_size) {
  242. GELOGD("To calc tensor size by shape = [%s]", GeShape(shape).ToString().c_str());
  243. uint32_t type_size;
  244. if (!TypeUtils::GetDataTypeLength(data_type, type_size)) {
  245. GELOGE(INTERNAL_ERROR, "[Get][DataTypeLength] failed for type:%s.",
  246. TypeUtils::DataTypeToSerialString(data_type).c_str());
  247. REPORT_CALL_ERROR("E19999", "GetDataTypeLength failed for type:%s.",
  248. TypeUtils::DataTypeToSerialString(data_type).c_str());
  249. return INTERNAL_ERROR;
  250. }
  251. tensor_size = type_size;
  252. for (const auto &dim : shape) {
  253. GE_CHECK_GE(dim, 0);
  254. GE_CHK_STATUS_RET(Int64MulCheckOverflow(tensor_size, dim), "[Check][Overflow] Shape size overflow, shape = [%s]",
  255. GeShape(shape).ToString().c_str());
  256. tensor_size *= dim;
  257. }
  258. GE_CHK_STATUS_RET(CheckInt64AddOverflow(tensor_size, kAlignment - 1),
  259. "[Check][Overflow]Tensor size is too large:%ld, shape = [%s]"
  260. "Shape size will overflow when add align.",
  261. tensor_size, GeShape(shape).ToString().c_str());
  262. tensor_size = (tensor_size + kAlignment - 1) / kAlignment * kAlignment;
  263. return SUCCESS;
  264. }
  265. Status ShapeInferenceEngine::CalcOutputTensorSizes(const NodeItem &node_item, bool fallback_with_range) {
  266. auto op_desc = node_item.GetOpDesc();
  267. for (size_t output_index = 0; output_index < op_desc->GetOutputsSize(); ++output_index) {
  268. auto tensor_desc = op_desc->MutableOutputDesc(output_index);
  269. GE_CHECK_NOTNULL(tensor_desc);
  270. const auto &shape = tensor_desc->MutableShape();
  271. // modify on copy
  272. auto dims = shape.GetDims();
  273. auto status_result = CanonicalizeShape(*tensor_desc, dims, fallback_with_range);
  274. if (status_result != SUCCESS) {
  275. REPORT_CALL_ERROR("E19999", "CanonicalizeShape failed, node:%s, output:%zu.",
  276. node_item.NodeName().c_str(), output_index);
  277. GELOGE(ge::FAILED, "[Canonicalize][Shape] failed for [%s], output %zu.",
  278. node_item.NodeName().c_str(), output_index);
  279. return status_result;
  280. }
  281. int64_t tensor_size;
  282. status_result = CalcTensorSize(tensor_desc->GetDataType(), dims, tensor_size);
  283. if (status_result != SUCCESS) {
  284. REPORT_CALL_ERROR("E19999", "Invoke CalcTensorSize failed, node:%s, output:%zu.",
  285. node_item.NodeName().c_str(), output_index);
  286. GELOGE(ge::FAILED, "[Calc][TensorSize] failed for [%s], output %zu.",
  287. node_item.NodeName().c_str(), output_index);
  288. return status_result;
  289. }
  290. GELOGD("[%s] Tensor size of output %zu = %ld", node_item.NodeName().c_str(), output_index, tensor_size);
  291. (void) TensorUtils::SetSize(*tensor_desc, tensor_size);
  292. }
  293. return SUCCESS;
  294. }
  295. } // namespace hybrid
  296. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示