You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

end_graph_task_unittest.cc 1.5 kB

5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/load/new_model_manager/task_info/end_graph_task_info.h"
  20. #include "graph/load/new_model_manager/davinci_model.h"
  21. #undef private
  22. #undef protected
  23. using namespace std;
  24. namespace ge {
  25. class UtestEndGraphTask : public testing::Test {
  26. protected:
  27. void SetUp() {}
  28. void TearDown() {}
  29. };
  30. // test Init_EndGraphTaskInfo_failed
  31. TEST_F(UtestEndGraphTask, init_end_graph_task_info) {
  32. domi::TaskDef task_def;
  33. EndGraphTaskInfo task_info;
  34. EXPECT_EQ(task_info.Init(task_def, nullptr), PARAM_INVALID);
  35. DavinciModel model(0, nullptr);
  36. task_def.set_stream_id(0);
  37. EXPECT_EQ(task_info.Init(task_def, &model), FAILED);
  38. model.stream_list_.push_back((void *)0x12345);
  39. EXPECT_EQ(task_info.Init(task_def, &model), SUCCESS);
  40. model.stream_list_.clear();
  41. }
  42. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示