|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665 |
- /**
- * Copyright (c) Huawei Technologies Co., Ltd. 2020-2021. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file nn_training_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
-
- #include "graph/operator_reg.h"
- namespace ge {
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- */
- REG_OP(ApplyAdaMax)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMax)
-
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdaMax instead.
- */
- REG_OP(ApplyAdaMaxD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMaxD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Five inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad.
- */
- REG_OP(SparseApplyAdagrad)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagrad)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagrad instead.
- */
- REG_OP(SparseApplyAdagradD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Six inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li epsilon: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2.
- */
- REG_OP(SparseApplyAdagradV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(epsilon, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li epsilon: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "accum" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagradV2 instead.
- */
- REG_OP(SparseApplyAdagradV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *@li momentum: Momentum. Must be a scalar.
-
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- */
-
- REG_OP(ApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentum)
-
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- * accum: A mutable tensor. Has the same type as input "accum".
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyMomentum instead.
- */
-
- REG_OP(ApplyMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentumD)
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using Nesterov momentum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyKerasMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentum)
-
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var". Should be from a
- * Variable().
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using nesterov momentum
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyKerasMomentum instead.
- */
- REG_OP(ApplyKerasMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentumD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm.
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdamWithAmsgrad instead.
- *
- */
- REG_OP(ApplyAdamWithAmsgradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .OUTPUT(vhat, TensorType::NumberType())
- .REQUIRED_ATTR(beta1, Float)
- .REQUIRED_ATTR(beta2, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgradD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm..
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyAdamWithAmsgrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgrad)
-
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- */
- REG_OP(ApplyPowerSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSign)
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyPowerSign instead.
- */
- REG_OP(ApplyPowerSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSignD)
-
- /**
- *@brief Updates "var" as FOBOS algorithm with fixed learning rate.
- * prox_v = var - alpha * delta
- * var = sign(prox_v)/(1+alpha * l2) * max{|prox_v|-alpha * l1,0}
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li l1: A scalar. Has the same type as "var".
- *@li l2: A scalar. Has the same type as "var".
- *@li delta: A tensor. Has the same type as "var". The change.
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalGradientDescent.
- *
- */
- REG_OP(ApplyProximalGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalGradientDescent)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- */
- REG_OP(ApplyAddSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSign)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li m: A mutable Tensor. Has the same type as "m" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAddSign instead.
- */
- REG_OP(ApplyAddSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSignD)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSProp.
- *
- */
- REG_OP(ApplyCenteredRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSProp)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li mg: A mutable Tensor. Has the same type as "mg".
- *@li ms: A mutable Tensor. Has the same type as "ms".
- *@li mom: A mutable Tensor. Has the same type as "mom" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSPropD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyCenteredRMSProp instead.
- */
- REG_OP(ApplyCenteredRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(mg, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSPropD)
-
- /**
- *@brief Updates "var" by subtracting 'alpha' * 'delta' from it.
- * var -= delta * alpha
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li delta: A tensor for the change. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyGradientDescent.
- *
- */
- REG_OP(ApplyGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyGradientDescent)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagrad)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagrad instead.
- */
- REG_OP(ApplyAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradD)
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- * @li epsilon: A scalar. Has the same type as "var".
- *
- * @par Attributes:
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagradV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2)
-
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- * @par Attributes:
- * @li epsilon: A scalar. Has the same type as "var".
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradV2 instead.
- */
- REG_OP(ApplyAdagradV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- */
- REG_OP(ApplyAdagradDA)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDA)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *gradient_accumulator: A mutable Tensor. Has the same type as "var".
- *gradient_squared_accumulator: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradDA instead.
- */
- REG_OP(ApplyAdagradDAD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(gradient_accumulator, TensorType::NumberType())
- .OUTPUT(gradient_squared_accumulator, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDAD)
-
- /**
- *@brief Returns the dimension index in the destination data format given the one in
- * the source data format.
- *
- *@par Inputs:
- * x: A tensor of type int32 or int64.
- * A Tensor with each element as a dimension index in source data format.
- * Must be in the range [-4, 4).
- *
- *@par Attributes:
- *@li src_format: An optional string. Defaults to NHWC.
- * source data format. Must of length 4.
- *@li dst_format: An optional string. Defaults to NCHW.
- * destination data format. Must of length 4.
- *
- *@par Outputs:
- * y: A tensor. Has the same type as "x". Must be in the range [0, 4).
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator DataFormatDimMap.
- *
- */
- REG_OP(DataFormatDimMap)
- .INPUT(x, TensorType::IndexNumberType())
- .ATTR(src_format, String, "NHWC")
- .ATTR(dst_format, String, "NCHW")
- .OUTPUT(y, TensorType::IndexNumberType())
- .OP_END_FACTORY_REG(DataFormatDimMap)
-
- /**
- * @brief Implements stochastic gradient descent (optionally with momentum).
- * Nesterov momentum is based on the formula from
- * On the importance of initialization and momentum in deep learning.
-
- * @par Inputs:
- * @li parameters: A mutable tensor of type float16 or float32.
- * Specifies the iterable of parameters to optimize or dicts defining parameter
- * groups.
- * @li gradient: A tensor of type float16 or float32.
- * Specifies the gradient of training step.
- * @li learning_rate: A tensor of type float16 or float32.
- * Specifies the learing_rate of training step.
- * @li accum: A tensor of type float16 or float32.
- * Specifies the velocity of training step.
- * @li momentum: A tensor of type float16 or float32.
- * Specifies the momentum factor.
- * @li stat: A tensor of type float16 or float32.
- * Specifies the status representing the first step or not . \n
-
- * @par Attributes:
- * @li dampening: An optional float, specifying the dampening for momentum.
- * Defaults to "0.0".
- * @li weight_decay: An optional float, specifying the L2 penalty. Defaults to
- * "0.0".
- * @li nesterov: An optional bool, specifying whether to enable Nesterov
- * momentum. Defaults to "False" . \n
-
- * @par Outputs:
- * parameters: A mutable tensor same as input "parameters" . \n
-
- * @see ApplyMomentum()
-
- * @par Third-party framework compatibility
- * @li Compatible with the PyTorch operator SGD.
- */
- REG_OP(SGD)
- .INPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(gradient, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(learning_rate, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(accum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(momentum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(stat, TensorType(DT_FLOAT, DT_FLOAT16))
- .OUTPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .ATTR(dampening, Float, 0.0)
- .ATTR(weight_decay, Float, 0.0)
- .ATTR(nesterov, Bool, false)
- .OP_END_FACTORY_REG(SGD)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- */
- REG_OP(ApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSProp)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm, a const input will be
- * considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True", updating
- * of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * var: A mutable tensor. Must have the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyRMSProp instead.
- */
- REG_OP(ApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSPropD)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- *var: A mutable tensor. Must have the same type as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagrad.
- */
- REG_OP(ApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagrad)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- * @li var: A mutable Tensor. Has the same type as "var".
- * @li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagradD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyProximalAdagrad instead.
- */
- REG_OP(ApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagradD)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention.
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
- */
- REG_OP(SparseApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagrad)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.\ n
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyProximalAdagrad instead.
- */
- REG_OP(SparseApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagradD)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- */
- REG_OP(ApplyFtrl)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrl)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "accum".
- *@li linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrl instead.
- */
- REG_OP(ApplyFtrlD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlD)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- */
- REG_OP(ApplyFtrlV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *accum: A mutable Tensor. Has the same type as "accum".
- *linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrlV2 instead.
- */
- REG_OP(ApplyFtrlV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2D)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- * var: A mutable Tensor. Has the same type as intput "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- */
- REG_OP(ApplyAdam)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdam)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdam instead.
- */
- REG_OP(ApplyAdamD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamD)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
- */
- REG_OP(ApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadelta)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var".
- *@li accum_update: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdadelta instead.
- */
- REG_OP(ApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadeltaD)
-
- /**
- *@brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else: var -= accum * lr
- *
- *@par Inputs:
- * Six inputs, including:
- *@li var: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- *@li accum: A mutable Tensor has the same type as "var".
- * Should be a Variable Tensor.
- *@li lr: A scalar has the same type as "var", for the scaling factor.
- *@li x1: A Tensor has type TensorType::NumberType().
- *@li momentum: A scalar has the same type as "var".
- *@li x2: A scalar has the same type as "var". \n
- *
- *@par Attributes:
- * Two attributes, including:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end,
- * the var you get is actually var - lr * momentum * accum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit
- * less contention. \n
- *
- *@par Outputs:
- * Two outputs, including:
- *@li var: A mutable Tensor has the same type as "var".
- *@li accum: A mutable Tensor has the same type as "var". \n
-
- *@par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentum)
-
- /**
- * @brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else:
- * var -= accum * lr
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor of type float32.
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li lr: A scalar has the same type as "accum", for the scaling factor.
- * @li x1: A Tensor has the same type as "accum".
- * @li momentum: A scalar has the same type as "accum".
- * @li x2: A scalar has the same type as "accum".
- * @li var_copy: A Tensor has type float16.
- *
- * @par Attributes:
- * Two Attributes, including:
- * @li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be var - lr * momentum * accum,
- * so in the end, the var you get is actually var - lr * momentum * accum.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * Three outputs, including:
- * @li var: A Tensor has the type float32.
- * @li var_copy: A Tensor has the type float16.
- * @li accum: A Tensor has the same type as input "accum".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentumExtern)
- .INPUT(var, TensorType(DT_FLOAT))
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .INPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(var, TensorType(DT_FLOAT))
- .OUTPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentumExtern)
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - x1 * x2 * lr
- * if use_nesterov is True:
- * var += accum * momentum - x1 * x2 * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li x1: A Tensor has type TensorType::NumberType().
- *@li momentum: A scalar. Has the same type as "var".
- *@li x2: A scalar has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using Nesterov momentum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * @li var: A mutable tensor. Has the same type as input "var".
- * @li accum: A mutable tensor. Has the same type as input "accum".
- *
- *@attention Constraints:
- * @li var: A mutable tensor. Has the same type as input "var".
- * @li accum: A mutable tensor. Has the same type as input "accum".
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(FusedMulApplyKerasMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyKerasMomentum)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li w_square_sum: A Tensor of square_sum(w), has the same type as "w", Must be a scalar.
- * @li g_square_sum: A Tensor of square(g), has the same type as "w", Must be a scalar.
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2Update)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(w_square_sum, TensorType(DT_FLOAT))
- .INPUT(g_square_sum, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2Update)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- */
- REG_OP(SparseApplyFtrl)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrl)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrl instead.
- */
- REG_OP(SparseApplyFtrlD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlD)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Ten inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2.
- */
- REG_OP(SparseApplyFtrlV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(l2_shrinkage, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum" . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2D.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrlV2 instead.
- */
- REG_OP(SparseApplyFtrlV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(l2_shrinkage, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2D)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "mom" and "ms".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", and "mom" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyRMSProp.
- */
- REG_OP(SparseApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSProp)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * a const input will be considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Six inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li ms: A mutable tensor. Must have the same type as input "ms".
- * @li mom: A mutable tensor. Must have the same type as input "mom".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms" and "mom" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyRMSProp instead.
- */
- REG_OP(SparseApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSPropD)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Eight inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "accum", and "accum_update" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum", and "accum_update" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdadelta.
- */
- REG_OP(SparseApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadelta)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * a const input will be considered as an attribute.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "accum", and "accum_update" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li accum: A mutable tensor. Must have the same type as input "accum".
- * @li accum_update: A mutable tensor. Must have the same type as input "accum_update".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum" and "accum_update" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdadelta instead.
- */
- REG_OP(SparseApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadeltaD)
-
-
- /**
- *@brief Clean memory of workspace list . \n
-
- *@par Attributes:
- * @li automic_add_mem_size: sizes of workspaces . \n
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(AtomicAddrClean)
- .ATTR(automic_add_mem_size, ListInt, {})
- .OP_END_FACTORY_REG(AtomicAddrClean)
-
- /**
- *@brief Clean memory of workspace list . \n
-
- *@par Attributes:
- * @li workspace_size: sizes of workspaces . \n
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(DynamicAtomicAddrClean)
- .ATTR(automic_add_mem_size, ListInt, {})
- .OP_END_FACTORY_REG(DynamicAtomicAddrClean)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
|