You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model.h 31 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  17. #define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  18. #include <map>
  19. #include <memory>
  20. #include <set>
  21. #include <string>
  22. #include <thread>
  23. #include <vector>
  24. #include "common/ge_types.h"
  25. #include "common/helper/model_helper.h"
  26. #include "common/helper/om_file_helper.h"
  27. #include "common/opskernel/ge_task_info.h"
  28. #include "common/properties_manager.h"
  29. #include "common/types.h"
  30. #include "framework/common/util.h"
  31. #include "graph/debug/ge_attr_define.h"
  32. #include "graph/load/new_model_manager/aipp_utils.h"
  33. #include "graph/load/new_model_manager/data_dumper.h"
  34. #include "graph/load/new_model_manager/data_inputer.h"
  35. #include "graph/load/new_model_manager/model_utils.h"
  36. #include "graph/load/new_model_manager/zero_copy_offset.h"
  37. #include "graph/load/new_model_manager/zero_copy_task.h"
  38. #include "graph/model.h"
  39. #include "graph/node.h"
  40. #include "graph/op_desc.h"
  41. #include "graph/operator.h"
  42. #include "graph/utils/attr_utils.h"
  43. #include "graph/utils/tensor_utils.h"
  44. #include "mmpa/mmpa_api.h"
  45. #include "proto/task.pb.h"
  46. #include "task_info/task_info.h"
  47. #include "graph/common/local_context.h"
  48. namespace ge {
  49. // op debug need 2048 bits buffer
  50. const size_t kOpDebugMemorySize = 2048UL;
  51. const size_t kDebugP2pSize = 8UL;
  52. typedef enum tagModelProcStage {
  53. MODEL_LOAD_START = 1,
  54. MODEL_LOAD_END,
  55. MODEL_PRE_PROC_START,
  56. MODEL_PRE_PROC_END,
  57. MODEL_INFER_START,
  58. MODEL_INFER_END,
  59. MODEL_AFTER_PROC_START,
  60. MODEL_AFTER_PROC_END,
  61. MODEL_PROC_INVALID,
  62. } ModelProcStage;
  63. struct timeInfo {
  64. uint32_t modelId;
  65. int64_t processBeginTime;
  66. int64_t processEndTime;
  67. int64_t inferenceBeginTime;
  68. int64_t inferenceEndTime;
  69. int64_t dumpBeginTime;
  70. int64_t dumpEndTime;
  71. };
  72. enum ExecuteMode {
  73. INITIALIZATION,
  74. SYNCHRONIZATION,
  75. ASYNCHRONIZATION,
  76. };
  77. // comments
  78. class DavinciModel {
  79. public:
  80. ///
  81. /// @ingroup ge
  82. /// @brief DavinciModel constructor
  83. /// @author
  84. ///
  85. DavinciModel(int32_t priority, const std::shared_ptr<ModelListener> &listener);
  86. ///
  87. /// @ingroup ge
  88. /// @brief DavinciModel desctructor, free Parse and Init resources
  89. /// @author
  90. ///
  91. ~DavinciModel();
  92. ///
  93. /// @ingroup ge
  94. /// @brief apply model to model_def_
  95. ///
  96. Status Assign(const GeModelPtr &ge_model);
  97. ///
  98. /// @ingroup ge
  99. /// @brief DavinciModel initialization, including Stream, ccHandle, Event, DataInputer, etc
  100. /// @return execute result
  101. /// @author
  102. ///
  103. Status Init(void *dev_ptr = nullptr, size_t memsize = 0, void *weight_ptr = nullptr, size_t weightsize = 0);
  104. ///
  105. /// @ingroup ge
  106. /// @brief ACL case, Load task list with queue.
  107. /// @param [in] input_que_ids: input queue ids from user, nums equal Data Op.
  108. /// @param [in] output_que_ids: input queue ids from user, nums equal NetOutput Op.
  109. /// @return: 0 for success / others for fail
  110. ///
  111. Status SetQueIds(const std::vector<uint32_t> &input_queue_ids, const std::vector<uint32_t> &output_queue_ids);
  112. ///
  113. /// @ingroup ge
  114. /// @brief Get DataInputer
  115. /// @return model ID
  116. ///
  117. uint32_t Id() const { return model_id_; }
  118. ///
  119. /// @ingroup ge
  120. /// @brief Get DataInputer
  121. /// @return model ID
  122. ///
  123. void SetId(uint32_t model_id) { model_id_ = model_id; }
  124. static void *Run(DavinciModel *model_pointer);
  125. ///
  126. /// @ingroup ge
  127. /// @brief NnExecute
  128. /// @param [in] stream execute stream
  129. /// @param [in] async_mode is asynchronize mode.
  130. /// @param [in] input_data model input data
  131. /// @param [out] output_data model output data
  132. ///
  133. Status NnExecute(rtStream_t stream, bool async_mode, const InputData &input_data, OutputData &output_data);
  134. ///
  135. /// @ingroup ge
  136. /// @brief lock mutex run flag
  137. /// @author
  138. ///
  139. void LockRunFlg() { mux_run_flg_.lock(); }
  140. ///
  141. /// @ingroup ge
  142. /// @brief unlock mutex run flag
  143. /// @author
  144. ///
  145. void UnlockRunFlg() { mux_run_flg_.unlock(); }
  146. ///
  147. /// @ingroup ge
  148. /// @brief get DataInputer
  149. /// @return DataInputer pointer
  150. ///
  151. DataInputer *const GetDataInputer() const { return data_inputer_; }
  152. // get Stream number
  153. uint32_t StreamNum() const { return runtime_param_.stream_num; }
  154. // get Event number
  155. uint32_t EventNum() const { return runtime_param_.event_num; }
  156. // get Lable number
  157. uint32_t LabelNum() const { return runtime_param_.label_num; }
  158. // get batch number
  159. uint32_t BatchNum() const { return runtime_param_.batch_num; }
  160. // get session id
  161. uint64_t SessionId() const { return runtime_param_.session_id; }
  162. // get model priority
  163. int32_t Priority() const { return priority_; }
  164. // get total mem size
  165. size_t TotalMemSize() const { return runtime_param_.mem_size; }
  166. const std::map<uint32_t, MemInfo> &P2PMemInfos() const {return runtime_param_.memory_infos;}
  167. // model name
  168. string Name() const { return name_; }
  169. // om_name
  170. string OmName() const { return om_name_; }
  171. // version
  172. uint32_t Version() const { return version_; }
  173. // get total weights mem size
  174. size_t TotalWeightsMemSize() const { return runtime_param_.weight_size; }
  175. size_t TotalVarMemSize() const { return runtime_param_.var_size; }
  176. // get base memory address
  177. uint8_t *MemBase() { return mem_base_; }
  178. // get weight base memory address
  179. uint8_t *WeightsMemBase() { return weights_mem_base_; }
  180. uint8_t *VarMemBase() { return var_mem_base_; }
  181. // get Event list
  182. const vector<rtEvent_t> &GetEventList() const { return event_list_; }
  183. const vector<rtStream_t> &GetStreamList() const { return stream_list_; }
  184. const vector<rtLabel_t> &GetLabelList() const { return label_list_; }
  185. Status DestroyThread();
  186. // Get Data Op.
  187. const vector<OpDescPtr> &GetDataList() const { return data_op_list_; }
  188. // get Op
  189. const map<uint32_t, OpDescPtr> &GetOpList() const { return op_list_; }
  190. OpDescPtr GetOpByIndex(uint32_t index) const {
  191. if (op_list_.find(index) == op_list_.end()) {
  192. return nullptr;
  193. }
  194. return op_list_.at(index);
  195. }
  196. OpDescPtr GetVariableOp(const string &name) {
  197. for (auto op_desc : variable_op_list_) {
  198. if (op_desc != nullptr && op_desc->GetName() == name) {
  199. return op_desc;
  200. }
  201. }
  202. return nullptr;
  203. }
  204. // get task info for profiling
  205. const std::vector<TaskDescInfo> &GetTaskDescInfo() const { return task_desc_info_; }
  206. // get updated task info list
  207. std::vector<TaskInfoPtr> GetTaskList() { return task_list_; }
  208. ///
  209. /// @ingroup ge
  210. /// @brief get model input and output format
  211. /// @return ccTensorFormat_t current model input and output format
  212. ///
  213. Format GetFormat();
  214. rtModel_t GetRtModelHandle() const { return rt_model_handle_; }
  215. rtStream_t GetRtModelStream() const { return rt_model_stream_; }
  216. uint64_t GetRtBaseAddr() const { return runtime_param_.logic_mem_base; }
  217. uint64_t GetRtWeightAddr() const { return runtime_param_.logic_weight_base; }
  218. uint64_t GetRtVarAddr() const { return runtime_param_.logic_var_base; }
  219. uint32_t GetFlowctrlIndex(uint32_t op_index);
  220. void PushHcclStream(rtStream_t value);
  221. bool IsBroadCastOpData(const NodePtr &var_node);
  222. ///
  223. /// @ingroup ge
  224. /// @brief For TVM Op, avoid Addr Reuse.
  225. /// @return void*
  226. ///
  227. const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = "");
  228. ///
  229. /// @ingroup ge
  230. /// @brief get model input and output desc info
  231. /// @param [out] input_shape model input size
  232. /// @param [out] output_shape model output size
  233. /// @return execute result
  234. ///
  235. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc);
  236. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc,
  237. std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &output_formats);
  238. ///
  239. /// @ingroup ge
  240. /// @brief Get dynamic batch_info
  241. /// @param [out] batch_info
  242. /// @param [out] dynamic_type
  243. /// @return execute result
  244. ///
  245. Status GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type) const;
  246. ///
  247. /// @ingroup ge
  248. /// @brief Get combined dynamic dims info
  249. /// @param [out] batch_info
  250. /// @return None
  251. ///
  252. void GetCombinedDynamicDims(std::vector<std::vector<int64_t>> &batch_info) const;
  253. void GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order) const;
  254. void GetCurShape(std::vector<int64_t> &batch_info, int32_t &dynamic_type);
  255. void GetModelAttr(std::vector<std::string> &dynamic_output_shape_info);
  256. ///
  257. /// @ingroup ge
  258. /// @brief Get AIPP input info
  259. /// @param [in] index
  260. /// @param [out] aipp_info
  261. /// @return execute result
  262. ///
  263. Status GetAIPPInfo(uint32_t index, AippConfigInfo &aipp_info);
  264. Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index);
  265. ///
  266. /// @ingroup ge
  267. /// @brief Get model_id.
  268. /// @return model_id
  269. ///
  270. uint32_t GetModelId() const { return model_id_; }
  271. ///
  272. /// @ingroup ge
  273. /// @brief get unique identification for op when load two or more models
  274. /// @param [in] op_desc : current op.
  275. /// @param [in] string identification: unique identification for current op.
  276. /// @return None
  277. ///
  278. void GetUniqueId(const OpDescPtr &op_desc, std::string &unique_identification);
  279. ///
  280. /// @ingroup ge
  281. /// @brief get model input and output desc for zero copy
  282. /// @param [out] input_shape model input size
  283. /// @param [out] output_shape model output size
  284. /// @return execute result
  285. ///
  286. Status GetInputOutputDescInfoForZeroCopy(vector<InputOutputDescInfo> &input_desc,
  287. vector<InputOutputDescInfo> &output_desc,
  288. std::vector<uint32_t> &inputFormats, std::vector<uint32_t> &output_formats);
  289. Status ReturnResult(uint32_t data_id, const bool rslt_flg, const bool seq_end_flg, OutputData *output_data);
  290. Status ReturnNoOutput(uint32_t data_id);
  291. Status ModelRunStart();
  292. ///
  293. /// @ingroup ge
  294. /// @brief stop run model
  295. /// @return Status
  296. ///
  297. Status ModelRunStop();
  298. ///
  299. /// @ingroup ge
  300. /// @brief model run flag
  301. /// @return Status
  302. ///
  303. bool RunFlag() const { return run_flg_; }
  304. Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &formats);
  305. ///
  306. /// @ingroup ge
  307. /// @brief Set Session Id
  308. /// @return void
  309. ///
  310. void SetSessionId(uint64_t session_id) { session_id_ = session_id; }
  311. ///
  312. /// @ingroup ge
  313. /// @brief Get Session Id
  314. /// @return sessionID
  315. ///
  316. uint64_t GetSessionId() const { return session_id_; }
  317. ///
  318. /// @ingroup ge
  319. /// @brief SetDeviceId
  320. /// @return void
  321. ///
  322. void SetDeviceId(uint32_t device_id) { device_id_ = device_id; }
  323. ///
  324. /// @ingroup ge
  325. /// @brief Get device Id
  326. /// @return device id
  327. ///
  328. uint32_t GetDeviceId() const { return device_id_; }
  329. bool NeedDestroyAicpuKernel() const { return need_destroy_aicpu_kernel_; }
  330. Status UpdateSessionId(uint64_t session_id);
  331. const RuntimeParam &GetRuntimeParam() { return runtime_param_; }
  332. int32_t GetDataInputTid() const { return dataInputTid; }
  333. void SetDataInputTid(int32_t data_input_tid) { dataInputTid = data_input_tid; }
  334. void DisableZeroCopy(const void *addr);
  335. bool GetOpDugReg() const { return is_op_debug_reg_; }
  336. ///
  337. /// @ingroup ge
  338. /// @brief Save outside address of Data or NetOutput used info for ZeroCopy.
  339. /// @param [in] const OpDescPtr &op_desc: current op desc
  340. /// @param [in] const std::vector<void *> &outside_addrs: address of task
  341. /// @param [in] const void *args_offset: arguments address save the address.
  342. /// @return None.
  343. ///
  344. void SetZeroCopyAddr(const OpDescPtr &op_desc, const std::vector<void *> &outside_addrs, const void *info, void *args,
  345. size_t size, size_t offset);
  346. void SetDynamicSize(const std::vector<uint64_t> &batch_num, int32_t dynamic_type);
  347. bool GetL1FusionEnableOption() { return is_l1_fusion_enable_; }
  348. void SetProfileTime(ModelProcStage stage, int64_t endTime = 0);
  349. int64_t GetLoadBeginTime() { return load_begin_time_; }
  350. int64_t GetLoadEndTime() { return load_end_time_; }
  351. Status SinkModelProfile();
  352. Status SinkTimeProfile(const InputData &current_data);
  353. void SaveDumpOpInfo(const RuntimeParam &model_param, const OpDescPtr &op, uint32_t task_id, uint32_t stream_id) {
  354. data_dumper_.SaveDumpOpInfo(model_param, op, task_id, stream_id);
  355. }
  356. void SaveDumpTask(uint32_t task_id, uint32_t stream_id, const std::shared_ptr<OpDesc> &op_desc, uintptr_t args) {
  357. data_dumper_.SaveDumpTask(task_id, stream_id, op_desc, args);
  358. }
  359. void SetEndGraphId(uint32_t task_id, uint32_t stream_id);
  360. DavinciModel &operator=(const DavinciModel &model) = delete;
  361. DavinciModel(const DavinciModel &model) = delete;
  362. const map<int64_t, std::vector<rtStream_t>> &GetHcclFolowStream() {
  363. return main_follow_stream_mapping_;
  364. }
  365. void SaveHcclFollowStream(int64_t main_stream_id, rtStream_t stream);
  366. void InitRuntimeParams();
  367. Status InitVariableMem();
  368. void UpdateMemBase(uint8_t *mem_base) {
  369. runtime_param_.mem_base = mem_base;
  370. mem_base_ = mem_base;
  371. }
  372. void SetTotalArgsSize(uint32_t args_size) { total_args_size_ += args_size; }
  373. uint32_t GetTotalArgsSize() { return total_args_size_; }
  374. void *GetCurrentArgsAddr(uint32_t offset) {
  375. void *cur_args = static_cast<char *>(args_) + offset;
  376. return cur_args;
  377. }
  378. void SetTotalIOAddrs(vector<void *> &io_addrs) {
  379. total_io_addrs_.insert(total_io_addrs_.end(), io_addrs.begin(), io_addrs.end());
  380. }
  381. void SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_size);
  382. int64_t GetFixedAddrsSize(string tensor_name);
  383. void *GetCurrentFixedAddr(int64_t offset) const {
  384. void *cur_addr = static_cast<char *>(fixed_addrs_) + offset;
  385. return cur_addr;
  386. }
  387. uint32_t GetFixedAddrOutputIndex(string tensor_name) {
  388. if (tensor_name_to_peer_output_index_.find(tensor_name) != tensor_name_to_peer_output_index_.end()) {
  389. return tensor_name_to_peer_output_index_[tensor_name];
  390. }
  391. return UINT32_MAX;
  392. }
  393. void SetKnownNode(bool known_node) { known_node_ = known_node; }
  394. bool IsKnownNode() { return known_node_; }
  395. Status MallocKnownArgs();
  396. Status UpdateKnownNodeArgs(const vector<void *> &inputs, const vector<void *> &outputs);
  397. Status CreateKnownZeroCopyMap(const vector<void *> &inputs, const vector<void *> &outputs);
  398. Status UpdateKnownZeroCopyAddr();
  399. void SetKnownNodeAddrNotChanged(bool base_addr_not_changed) { base_addr_not_changed_ = base_addr_not_changed; }
  400. Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info);
  401. Status GetAllAippInputOutputDims(uint32_t index, std::vector<InputOutputDims> &input_dims,
  402. std::vector<InputOutputDims> &output_dims);
  403. void SetModelDescVersion(bool is_new_model_desc) { is_new_model_desc_ = is_new_model_desc; }
  404. // om file name
  405. void SetOmName(string om_name) { om_name_ = om_name; }
  406. void SetDumpProperties(const DumpProperties &dump_properties) { data_dumper_.SetDumpProperties(dump_properties); }
  407. const DumpProperties &GetDumpProperties() const { return data_dumper_.GetDumpProperties(); }
  408. bool GetOpDescInfo(uint32_t stream_id, uint32_t task_id, OpDescInfo &op_desc_info) const {
  409. return data_dumper_.GetOpDescInfo(stream_id, task_id, op_desc_info);
  410. }
  411. Status InitInputOutputForDynamic(const ComputeGraphPtr &compute_graph);
  412. private:
  413. // memory address of weights
  414. uint8_t *weights_mem_base_;
  415. uint8_t *var_mem_base_;
  416. // memory address of model
  417. uint8_t *mem_base_;
  418. uint8_t *p2p_mem_base_;
  419. bool is_inner_mem_base_;
  420. bool is_inner_weight_base_;
  421. bool is_inner_p2p_mem_base_;
  422. // input data manager
  423. DataInputer *data_inputer_;
  424. int64_t load_begin_time_;
  425. int64_t load_end_time_;
  426. struct timeInfo time_info_;
  427. int32_t dataInputTid;
  428. ///
  429. /// @ingroup ge
  430. /// @brief Save Batch label Info.
  431. /// @param [in] const OpDescPtr &op_desc
  432. /// @param [in] uintptr_t addr: address value in args block.
  433. /// @return None.
  434. ///
  435. void SetBatchLabelAddr(const OpDescPtr &op_desc, uintptr_t addr);
  436. ///
  437. /// @ingroup ge
  438. /// @brief Copy Check input size and model op size.
  439. /// @param [in] const int64_t &input_size: input size.
  440. /// @param [in] const int64_t &op_size: model op size.
  441. /// @param [in] is_dynamic: dynamic batch input flag.
  442. /// @return true if success
  443. ///
  444. bool CheckInputAndModelSize(const int64_t &input_size, const int64_t &op_size, bool is_dynamic);
  445. ///
  446. /// @ingroup ge
  447. /// @brief Set copy only for No task feed NetOutput address.
  448. /// @return None.
  449. ///
  450. void SetCopyOnlyOutput();
  451. ///
  452. /// @ingroup ge
  453. /// @brief Copy Input/Output to model for direct use.
  454. /// @param [in] const InputData &input_data: user input data info.
  455. /// @param [in/out] OutputData &output_data: user output data info.
  456. /// @param [in] bool is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  457. /// @return SUCCESS handle successfully / others handle failed
  458. ///
  459. Status CopyModelData(const InputData &input_data, OutputData &output_data, bool is_dynamic);
  460. ///
  461. /// @ingroup ge
  462. /// @brief Copy Data addr to model for direct use.
  463. /// @param [in] data_info: model memory addr/size map { data_index, { tensor_size, tensor_addr } }.
  464. /// @param [in] is_input: input data or output data
  465. /// @param [in] blobs: user input/output data list.
  466. /// @param [in] is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  467. /// @param [in] batch_label: batch label for multi-batch scenes
  468. /// @return SUCCESS handle successfully / others handle failed
  469. ///
  470. Status UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &data_info, bool is_input,
  471. const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label);
  472. Status CopyInputData(const InputData &input_data, bool device_data = false);
  473. Status CopyOutputData(uint32_t data_id, OutputData &output_data, rtMemcpyKind_t kind);
  474. Status SyncVarData();
  475. Status InitModelMem(void *dev_ptr, size_t memsize, void *weight_ptr, size_t weightsize);
  476. void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, InputOutputDescInfo &input);
  477. void SetInputDimsInfo(const vector<int64_t> &model_input_dims, Format &format, InputOutputDescInfo &input);
  478. Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats);
  479. Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo);
  480. void UnbindHcomStream();
  481. Status DistributeTask();
  482. uint8_t *MallocFeatureMapMem(size_t data_size);
  483. uint8_t *MallocWeightsMem(size_t weights_size);
  484. uint8_t* MallocP2PMem(size_t p2p_data_size);
  485. void FreeFeatureMapMem();
  486. void FreeWeightsMem();
  487. void FreeP2PMem();
  488. void ReleaseTask();
  489. void UnbindTaskSinkStream();
  490. bool IsAicpuKernelConnectSpecifiedLayer();
  491. ///
  492. /// @ingroup ge
  493. /// @brief Reduce memory usage after task sink.
  494. /// @return: void
  495. ///
  496. void Shrink();
  497. ///
  498. /// @ingroup ge
  499. /// @brief Travel all nodes and do some init.
  500. /// @param [in] compute_graph: ComputeGraph to load.
  501. /// @return Status
  502. ///
  503. Status InitNodes(const ComputeGraphPtr &compute_graph);
  504. ///
  505. /// @ingroup ge
  506. /// @brief Data Op Initialize.
  507. /// @param [in] NodePtr: Data Op.
  508. /// @param [in/out] data_op_index: NetOutput addr size info.
  509. /// @return Status
  510. ///
  511. Status InitDataOp(const NodePtr &node, uint32_t &data_op_index, map<uint32_t, OpDescPtr> &data_by_index);
  512. ///
  513. /// @ingroup ge
  514. /// @brief Sort Data op list by index.
  515. /// @param [in] data_by_index: map of Data Op.
  516. /// @return
  517. ///
  518. void AdjustDataOpList(const map<uint32_t, OpDescPtr> &data_by_index);
  519. ///
  520. /// @ingroup ge
  521. /// @brief input zero copy node Initialize.
  522. /// @param [in] NodePtr: Data Op.
  523. /// @return Status
  524. ///
  525. Status InitInputZeroCopyNodes(const NodePtr &node);
  526. ///
  527. /// @ingroup ge
  528. /// @brief NetOutput Op Initialize.
  529. /// @param [in] NodePtr: NetOutput Op.
  530. /// @return Status
  531. ///
  532. Status InitNetOutput(const NodePtr &node);
  533. ///
  534. /// @ingroup ge
  535. /// @brief output zero copy node Initialize.
  536. /// @param [in] NodePtr: Data Op.
  537. /// @return Status
  538. ///
  539. Status InitOutputZeroCopyNodes(const NodePtr &node);
  540. ///
  541. /// @ingroup ge
  542. /// @brief input zero copy node Initialize for Case.
  543. /// @param [in] NodePtr: Data Op.
  544. /// @return Status
  545. ///
  546. Status InitInputBatchLabel(const NodePtr &node);
  547. ///
  548. /// @ingroup ge
  549. /// @brief output zero copy node Initialize for Case.
  550. /// @param [in] NodePtr: netoutput Op.
  551. /// @return Status
  552. ///
  553. Status InitOutputBatchLabel(const NodePtr &node);
  554. ///
  555. /// @ingroup ge
  556. /// @brief Constant Op Init.
  557. /// @return Status
  558. ///
  559. Status InitConstant(const OpDescPtr &op_desc);
  560. Status InitVariable(const OpDescPtr &op_desc);
  561. /// @ingroup ge
  562. /// @brief LabelSet Op Initialize.
  563. /// @param [in] op_desc: LabelSet Op descriptor.
  564. /// @return Status
  565. Status InitLabelSet(const OpDescPtr &op_desc);
  566. Status InitStreamSwitch(const OpDescPtr &op_desc);
  567. Status InitStreamActive(const OpDescPtr &op_desc);
  568. Status InitStreamSwitchN(const OpDescPtr &op_desc);
  569. ///
  570. /// @ingroup ge
  571. /// @brief Case Op Init.
  572. /// @return Status
  573. ///
  574. Status InitCase(const OpDescPtr &op_desc);
  575. Status SetDynamicBatchInfo(const OpDescPtr &op_desc, uint32_t batch_num);
  576. ///
  577. /// @ingroup ge
  578. /// @brief TVM Op Init.
  579. /// @return Status
  580. ///
  581. Status InitTbeHandle(const OpDescPtr &op_desc);
  582. void StoreTbeHandle(const std::string &handle_key);
  583. void CleanTbeHandle();
  584. ///
  585. /// @ingroup ge
  586. /// @brief Make active stream list and bind to model.
  587. /// @return: 0 for success / others for fail
  588. ///
  589. Status BindModelStream();
  590. ///
  591. /// @ingroup ge
  592. /// @brief Init model stream for NN model.
  593. /// @return Status
  594. ///
  595. Status InitModelStream(rtStream_t stream);
  596. ///
  597. /// @ingroup ge
  598. /// @brief ACL, Load task list with queue entrance.
  599. /// @return: 0 for success / others for fail
  600. ///
  601. Status LoadWithQueue();
  602. ///
  603. /// @ingroup ge
  604. /// @brief ACL, Bind Data Op addr to input queue.
  605. /// @return: 0 for success / others for fail
  606. ///
  607. Status BindInputQueue();
  608. Status CpuTaskModelZeroCopy(std::vector<uintptr_t> &mbuf_list, std::map<const void *, ZeroCopyOffset> &outside_addrs);
  609. ///
  610. /// @ingroup ge
  611. /// @brief ACL, Bind NetOutput Op addr to output queue.
  612. /// @return: 0 for success / others for fail
  613. ///
  614. Status BindOutputQueue();
  615. Status CpuModelPrepareOutput(uintptr_t addr, uint32_t size);
  616. ///
  617. /// @ingroup ge
  618. /// @brief definiteness queue schedule, bind input queue to task.
  619. /// @param [in] queue_id: input queue id from user.
  620. /// @param [in] addr: Data Op output tensor address.
  621. /// @param [in] size: Data Op output tensor size.
  622. /// @return: 0 for success / others for fail
  623. ///
  624. Status CpuModelDequeue(uint32_t queue_id);
  625. ///
  626. /// @ingroup ge
  627. /// @brief definiteness queue schedule, bind output queue to task.
  628. /// @param [in] queue_id: output queue id from user.
  629. /// @param [in] addr: NetOutput Op input tensor address.
  630. /// @param [in] size: NetOutput Op input tensor size.
  631. /// @return: 0 for success / others for fail
  632. ///
  633. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t addr, uint32_t size);
  634. ///
  635. /// @ingroup ge
  636. /// @brief definiteness queue schedule, active original model stream.
  637. /// @return: 0 for success / others for fail
  638. ///
  639. Status CpuActiveStream();
  640. ///
  641. /// @ingroup ge
  642. /// @brief definiteness queue schedule, wait for end graph.
  643. /// @return: 0 for success / others for fail
  644. ///
  645. Status CpuWaitEndGraph();
  646. Status BindEnqueue();
  647. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t out_mbuf);
  648. ///
  649. /// @ingroup ge
  650. /// @brief definiteness queue schedule, repeat run model.
  651. /// @return: 0 for success / others for fail
  652. ///
  653. Status CpuModelRepeat();
  654. Status InitEntryTask();
  655. Status AddHeadStream();
  656. ///
  657. /// @ingroup ge
  658. /// @brief set ts device.
  659. /// @return: 0 for success / others for fail
  660. ///
  661. Status SetTSDevice();
  662. Status OpDebugRegister();
  663. void OpDebugUnRegister();
  664. void CheckHasHcomOp();
  665. Status DoTaskSink();
  666. void CreateOutput(uint32_t index, OpDescPtr &op_desc, InputOutputDescInfo &output, uint32_t &format_result);
  667. Status TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id);
  668. // get desc info of graph for profiling
  669. Status GetComputeGraphInfo(const ComputeGraphPtr &graph, vector<ComputeGraphDescInfo> &graph_desc_info);
  670. void SetDataDumperArgs(const ComputeGraphPtr &compute_graph);
  671. Status GenOutputTensorInfo(const OpDescPtr &op_desc, uint32_t data_index, OutputData *output_data,
  672. std::vector<ge::OutputTensorInfo> &outputs);
  673. void ParseAIPPInfo(std::string in_out_info, InputOutputDims &dims_info);
  674. void SetLabelForDynamic(const NodePtr &node);
  675. void ParseDynamicOutShape(const std::vector<std::string> &str_info, std::vector<vector<int64_t>> &vec_info);
  676. bool IsGetNextSinkDynamic(const OpDescPtr &op_desc);
  677. Status GetGetDynamicDimsNodeInfo(const NodePtr &node);
  678. Status GetGearAndRealOutSizeInfo(size_t input_count, const NodePtr &node);
  679. Status GetRealOutputSizeOfMerge(size_t input_index, const NodePtr &merge_node);
  680. bool is_model_has_inited_;
  681. uint32_t model_id_;
  682. uint32_t runtime_model_id_;
  683. string name_;
  684. // used for inference data dump
  685. string om_name_;
  686. uint32_t version_;
  687. GeModelPtr ge_model_;
  688. bool need_destroy_aicpu_kernel_{false};
  689. vector<std::string> out_node_name_;
  690. map<uint32_t, OpDescPtr> op_list_;
  691. // data op_desc
  692. vector<OpDescPtr> data_op_list_;
  693. vector<OpDescPtr> output_op_list_;
  694. vector<OpDescPtr> variable_op_list_;
  695. std::map<uint32_t, ZeroCopyOffset> new_input_data_info_;
  696. std::map<uint32_t, ZeroCopyOffset> new_output_data_info_;
  697. std::map<const void *, ZeroCopyOffset> new_input_outside_addrs_;
  698. std::map<const void *, ZeroCopyOffset> new_output_outside_addrs_;
  699. std::set<const void *> real_virtual_addrs_;
  700. // output op: save cce op actual needed memory size
  701. vector<int64_t> output_memory_size_list_;
  702. std::thread thread_id_;
  703. std::shared_ptr<ModelListener> listener_;
  704. bool run_flg_;
  705. std::mutex mux_run_flg_;
  706. int32_t priority_;
  707. vector<rtStream_t> stream_list_;
  708. std::mutex all_hccl_stream_list_mutex_;
  709. vector<rtStream_t> all_hccl_stream_list_;
  710. // for reuse hccl_follow_stream
  711. std::mutex capacity_of_stream_mutex_;
  712. std::map<int64_t, std::vector<rtStream_t>> main_follow_stream_mapping_;
  713. vector<rtEvent_t> event_list_;
  714. vector<rtLabel_t> label_list_;
  715. set<uint32_t> label_id_indication_;
  716. std::mutex outside_addrs_mutex_;
  717. std::vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
  718. std::set<const void *> copy_only_addrs_; // Address need copy to original place.
  719. // {op_id, batch_label}
  720. std::map<int64_t, std::string> zero_copy_op_id_batch_label_;
  721. // {batch_label, addrs}
  722. std::map<std::string, std::set<uintptr_t>> zero_copy_batch_label_addrs_;
  723. std::vector<TaskInfoPtr> task_list_;
  724. // rt_moodel_handle
  725. rtModel_t rt_model_handle_;
  726. rtStream_t rt_model_stream_;
  727. bool is_inner_model_stream_;
  728. bool is_async_mode_; // For NN execute, Async mode use rtMemcpyAsync on rt_model_stream_.
  729. ExecuteMode last_execute_mode_;
  730. bool is_stream_list_bind_{false};
  731. bool is_pure_head_stream_{false};
  732. rtStream_t rt_head_stream_{nullptr};
  733. rtStream_t rt_entry_stream_{nullptr};
  734. rtAicpuDeployType_t deploy_type_{AICPU_DEPLOY_RESERVED};
  735. // ACL queue schedule, save queue ids for Init.
  736. std::vector<TaskInfoPtr> cpu_task_list_;
  737. std::vector<uint32_t> input_queue_ids_; // input queue ids created by caller.
  738. std::vector<uint32_t> output_queue_ids_; // output queue ids created by caller.
  739. std::vector<uintptr_t> input_mbuf_list_; // input mbuf created by dequeue task.
  740. std::vector<uintptr_t> output_mbuf_list_; // output mbuf created by dequeue task.
  741. uint64_t session_id_;
  742. uint32_t device_id_;
  743. std::mutex flowctrl_op_index_internal_map_mutex_;
  744. std::map<uint32_t, uint32_t> flowctrl_op_index_internal_map_;
  745. std::vector<rtStream_t> active_stream_list_;
  746. std::set<uint32_t> active_stream_indication_;
  747. std::set<uint32_t> hcom_streams_;
  748. RuntimeParam runtime_param_;
  749. static std::mutex tvm_bin_mutex_;
  750. std::set<std::string> tvm_bin_kernel_;
  751. std::map<std::string, uint32_t> used_tbe_handle_map_;
  752. // for profiling task and graph info
  753. std::map<uint32_t, std::string> op_name_map_;
  754. std::vector<TaskDescInfo> task_desc_info_;
  755. int64_t maxDumpOpNum_;
  756. // for data dump
  757. DataDumper data_dumper_;
  758. uint64_t iterator_count_;
  759. bool is_l1_fusion_enable_;
  760. std::map<OpDescPtr, void *> saved_task_addrs_;
  761. void *l1_fusion_addr_ = nullptr;
  762. bool known_node_ = false;
  763. uint32_t total_args_size_ = 0;
  764. void *args_ = nullptr;
  765. void *args_host_ = nullptr;
  766. void *fixed_addrs_ = nullptr;
  767. int64_t total_fixed_addr_size_ = 0;
  768. std::map<const void *, void *> knonw_input_data_info_;
  769. std::map<const void *, void *> knonw_output_data_info_;
  770. vector<void *> total_io_addrs_;
  771. vector<void *> orig_total_io_addrs_;
  772. bool base_addr_not_changed_ = false;
  773. vector<vector<int64_t>> batch_info_;
  774. std::vector<std::vector<int64_t>> combined_batch_info_;
  775. vector<string> user_designate_shape_order_;
  776. int32_t dynamic_type_ = 0;
  777. bool is_dynamic_ = false;
  778. vector<uint64_t> batch_size_;
  779. // key: input tensor name, generally rts op;
  780. // value: the fixed addr of input anchor, same as the peer output anchor addr of the peer op
  781. std::map<string, int64_t> tensor_name_to_fixed_addr_size_;
  782. // key: input tensor name, generally rts op; value: the peer output anchor of the peer op
  783. std::map<string, int64_t> tensor_name_to_peer_output_index_;
  784. // if model is first execute
  785. bool is_first_execute_;
  786. // for op debug
  787. std::mutex debug_reg_mutex_;
  788. bool is_op_debug_reg_ = false;
  789. void *op_debug_addr_ = nullptr;
  790. void *p2p_debug_addr_ = nullptr;
  791. bool is_new_model_desc_{false};
  792. bool is_getnext_sink_dynamic_ = false;
  793. std::vector<int64_t> cur_dynamic_dims_;
  794. void *netoutput_last_input_addr_ = nullptr;
  795. int64_t netoutput_last_input_size_ = 0;
  796. size_t shape_of_cur_dynamic_dims_ = 0;
  797. // key: input_index: input is merge node; value: each gear info and each output size
  798. std::map<size_t, std::map<vector<int64_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_;
  799. // key: input_index: input is merge node; value: each gear info and each output shape
  800. std::map<size_t, std::map<vector<int64_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_;
  801. };
  802. } // namespace ge
  803. #endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示