You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 33 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/utils/graph_utils.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "graph/load/model_manager/davinci_model.h"
  22. using namespace std;
  23. namespace ge {
  24. extern OpDescPtr CreateOpDesc(string name, string type);
  25. class UtestDavinciModel : public testing::Test {
  26. protected:
  27. void SetUp() {}
  28. void TearDown() {}
  29. };
  30. /*TEST_F(UtestDavinciModel, init_success) {
  31. DavinciModel model(0, nullptr);
  32. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  33. ProfilingManager::Instance().is_load_profiling_ = true;
  34. GeModelPtr ge_model = make_shared<GeModel>();
  35. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  36. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  37. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  38. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  39. ge_model->SetModelTaskDef(model_task_def);
  40. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  41. TensorUtils::SetSize(tensor, 512);
  42. OpDescPtr op_input = CreateOpDesc("data", DATA);
  43. op_input->AddInputDesc(tensor);
  44. op_input->AddOutputDesc(tensor);
  45. op_input->SetInputOffset({1024});
  46. op_input->SetOutputOffset({1024});
  47. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  48. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  49. op_kernel->AddInputDesc(tensor);
  50. op_kernel->AddOutputDesc(tensor);
  51. op_kernel->SetInputOffset({1024});
  52. op_kernel->SetOutputOffset({1024});
  53. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  54. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  55. op_memcpy->AddInputDesc(tensor);
  56. op_memcpy->AddOutputDesc(tensor);
  57. op_memcpy->SetInputOffset({1024});
  58. op_memcpy->SetOutputOffset({5120});
  59. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  60. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  61. op_output->AddInputDesc(tensor);
  62. op_output->SetInputOffset({5120});
  63. op_output->SetSrcName( { "memcpy" } );
  64. op_output->SetSrcIndex( { 0 } );
  65. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  66. domi::TaskDef *task_def1 = model_task_def->add_task();
  67. task_def1->set_stream_id(0);
  68. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  69. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  70. kernel_def->set_stub_func("stub_func");
  71. kernel_def->set_args_size(64);
  72. string args(64, '1');
  73. kernel_def->set_args(args.data(), 64);
  74. domi::KernelContext *context = kernel_def->mutable_context();
  75. context->set_op_index(1);
  76. context->set_kernel_type(2); // ccKernelType::TE
  77. uint16_t args_offset[9] = {0};
  78. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  79. domi::TaskDef *task_def2 = model_task_def->add_task();
  80. task_def2->set_stream_id(0);
  81. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  82. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  83. memcpy_async->set_src(1024);
  84. memcpy_async->set_dst(5120);
  85. memcpy_async->set_dst_max(512);
  86. memcpy_async->set_count(1);
  87. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  88. memcpy_async->set_op_index(2);
  89. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  90. EXPECT_EQ(model.Init(), SUCCESS);
  91. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  92. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  93. EXPECT_EQ(model.task_list_.size(), 2);
  94. OutputData output_data;
  95. vector<OutputTensorInfo> outputs;
  96. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  97. EXPECT_EQ(output_data.blobs.size(), 1);
  98. EXPECT_EQ(outputs.size(), 1);
  99. ProfilingManager::Instance().is_load_profiling_ = false;
  100. }*/
  101. TEST_F(UtestDavinciModel, init_data_op) {
  102. DavinciModel model(0, nullptr);
  103. model.ge_model_ = make_shared<GeModel>();
  104. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  105. model.runtime_param_.mem_size = 5120000;
  106. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  107. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  108. TensorUtils::SetSize(tensor, 512);
  109. OpDescPtr op_input = CreateOpDesc("data", DATA);
  110. op_input->AddInputDesc(tensor);
  111. op_input->AddOutputDesc(tensor);
  112. op_input->SetInputOffset({1024});
  113. op_input->SetOutputOffset({1024});
  114. NodePtr node_input = graph->AddNode(op_input);
  115. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  116. op_output->AddInputDesc(tensor);
  117. op_output->SetInputOffset({1024});
  118. op_output->SetSrcName( { "data" } );
  119. op_output->SetSrcIndex( { 0 } );
  120. NodePtr node_output = graph->AddNode(op_output);
  121. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  122. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  123. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  124. EXPECT_EQ(model.op_list_.size(), 2);
  125. }
  126. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  127. DavinciModel model(0, nullptr);
  128. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  129. model.runtime_param_.mem_size = 5120000;
  130. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  131. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  132. TensorUtils::SetSize(tensor, 512);
  133. OpDescPtr op_input = CreateOpDesc("data", DATA);
  134. op_input->AddInputDesc(tensor);
  135. op_input->AddOutputDesc(tensor);
  136. op_input->SetInputOffset({1024});
  137. op_input->SetOutputOffset({1024});
  138. NodePtr node = graph->AddNode(op_input);
  139. uint32_t data_op_index = 0;
  140. map<uint32_t, OpDescPtr> data_by_index;
  141. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index), SUCCESS);
  142. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  143. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  144. EXPECT_EQ(data_op_index, 0);
  145. EXPECT_TRUE(data_by_index.empty());
  146. }
  147. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  148. DavinciModel model(0, nullptr);
  149. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  150. model.runtime_param_.mem_size = 5120000;
  151. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  152. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  153. TensorUtils::SetSize(tensor, 512);
  154. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  155. op_output->AddInputDesc(tensor);
  156. op_output->SetInputOffset({1024});
  157. op_output->SetSrcName( { "data" } );
  158. op_output->SetSrcIndex( { 0 } );
  159. NodePtr node = graph->AddNode(op_output);
  160. std::vector<OpDescPtr> output_op_list;
  161. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list), SUCCESS);
  162. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  163. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  164. EXPECT_TRUE(output_op_list.empty());
  165. }
  166. TEST_F(UtestDavinciModel, init_unknown) {
  167. DavinciModel model(0, nullptr);
  168. model.SetKnownNode(true);
  169. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  170. GeModelPtr ge_model = make_shared<GeModel>();
  171. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  172. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  173. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  174. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  175. ge_model->SetModelTaskDef(model_task_def);
  176. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  177. TensorUtils::SetSize(tensor, 512);
  178. OpDescPtr op_input = CreateOpDesc("data", DATA);
  179. op_input->AddInputDesc(tensor);
  180. op_input->AddOutputDesc(tensor);
  181. op_input->SetInputOffset({1024});
  182. op_input->SetOutputOffset({1024});
  183. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  184. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  185. op_kernel->AddInputDesc(tensor);
  186. op_kernel->AddOutputDesc(tensor);
  187. op_kernel->SetInputOffset({1024});
  188. op_kernel->SetOutputOffset({1024});
  189. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  190. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  191. op_memcpy->AddInputDesc(tensor);
  192. op_memcpy->AddOutputDesc(tensor);
  193. op_memcpy->SetInputOffset({1024});
  194. op_memcpy->SetOutputOffset({5120});
  195. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  196. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  197. op_output->AddInputDesc(tensor);
  198. op_output->SetInputOffset({5120});
  199. op_output->SetSrcName( { "memcpy" } );
  200. op_output->SetSrcIndex( { 0 } );
  201. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  202. domi::TaskDef *task_def1 = model_task_def->add_task();
  203. task_def1->set_stream_id(0);
  204. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  205. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  206. kernel_def->set_stub_func("stub_func");
  207. kernel_def->set_args_size(64);
  208. string args(64, '1');
  209. kernel_def->set_args(args.data(), 64);
  210. domi::KernelContext *context = kernel_def->mutable_context();
  211. context->set_op_index(1);
  212. context->set_kernel_type(2); // ccKernelType::TE
  213. uint16_t args_offset[9] = {0};
  214. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  215. domi::TaskDef *task_def2 = model_task_def->add_task();
  216. task_def2->set_stream_id(0);
  217. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  218. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  219. memcpy_async->set_src(1024);
  220. memcpy_async->set_dst(5120);
  221. memcpy_async->set_dst_max(512);
  222. memcpy_async->set_count(1);
  223. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  224. memcpy_async->set_op_index(2);
  225. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  226. EXPECT_EQ(model.Init(), SUCCESS);
  227. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  228. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  229. EXPECT_EQ(model.task_list_.size(), 2);
  230. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  231. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  232. vector<string> out_shape_info;
  233. model.GetModelAttr(out_shape_info);
  234. vector<InputOutputDescInfo> input_descs;
  235. vector<InputOutputDescInfo> output_descs;
  236. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  237. int32_t virtual_addr = 0;
  238. const vector<void *> inputs = { &virtual_addr };
  239. const vector<void *> outputs = { &virtual_addr };
  240. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  241. }
  242. TEST_F(UtestDavinciModel, Init_variable_op) {
  243. DavinciModel model(0, nullptr);
  244. model.ge_model_ = make_shared<GeModel>();
  245. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  246. model.runtime_param_.mem_size = 5120000;
  247. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  248. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  249. TensorUtils::SetSize(tensor, 512);
  250. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  251. var1->AddInputDesc(tensor);
  252. var1->AddOutputDesc(tensor);
  253. var1->SetInputOffset({1024});
  254. var1->SetOutputOffset({1024});
  255. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  256. graph->AddNode(var1);
  257. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  258. var2->AddInputDesc(tensor);
  259. var2->AddOutputDesc(tensor);
  260. var2->SetInputOffset({1024});
  261. var2->SetOutputOffset({1024});
  262. graph->AddNode(var2);
  263. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  264. EXPECT_EQ(model.ReturnNoOutput(1), PARAM_INVALID);
  265. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  266. }
  267. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  268. DavinciModel model(0, nullptr);
  269. model.ge_model_ = make_shared<GeModel>();
  270. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  271. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  272. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  273. op_output->AddInputDesc(tensor);
  274. op_output->SetInputOffset({1024});
  275. NodePtr node_output = graph->AddNode(op_output);
  276. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  277. }
  278. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  279. DavinciModel model(0, nullptr);
  280. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  281. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  282. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  283. data1->AddInputDesc(shape_desc);
  284. data1->AddOutputDesc(shape_desc);
  285. NodePtr data1_node = graph->AddNode(data1);
  286. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  287. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  288. case_node->AddInputDesc(tensor);
  289. case_node->AddOutputDesc(tensor);
  290. NodePtr case1_node = graph->AddNode(case_node);
  291. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  292. output->AddInputDesc(tensor);
  293. output->SetSrcName( { "case1" } );
  294. output->SetSrcIndex( { 0 } );
  295. NodePtr output_node = graph->AddNode(output);
  296. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  297. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  298. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  299. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  300. model.is_getnext_sink_dynamic_ = false;
  301. model.is_online_infer_dynamic_ = true;
  302. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  303. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  304. EXPECT_EQ(ret, SUCCESS);
  305. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  306. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  307. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  308. EXPECT_EQ(ret, SUCCESS);
  309. }
  310. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  311. DavinciModel model(0, nullptr);
  312. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  313. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  314. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  315. data1->AddInputDesc(shape_desc);
  316. data1->AddOutputDesc(shape_desc);
  317. NodePtr data1_node = graph->AddNode(data1);
  318. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  319. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  320. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  321. shape_node->AddInputDesc(in_tensor);
  322. shape_node->AddOutputDesc(out_tensor);
  323. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  324. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  325. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  326. output->AddInputDesc(tensor);
  327. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  328. output->SetSrcIndex( { 0, 1 } );
  329. NodePtr output_node = graph->AddNode(output);
  330. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  331. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  332. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  333. model.is_getnext_sink_dynamic_ = true;
  334. model.is_online_infer_dynamic_ = false;
  335. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  336. EXPECT_EQ(ret, SUCCESS);
  337. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  338. model.runtime_param_.mem_size = 4;
  339. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  340. EXPECT_EQ(ret, SUCCESS);
  341. }
  342. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  343. DavinciModel model(0, nullptr);
  344. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  345. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  346. model.runtime_param_.mem_size = 5120000;
  347. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  348. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  349. TensorUtils::SetSize(tensor, 512);
  350. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  351. op_desc->AddInputDesc(tensor);
  352. op_desc->AddOutputDesc(tensor);
  353. op_desc->SetInputOffset({1024});
  354. op_desc->SetOutputOffset({1024});
  355. NodePtr node = graph->AddNode(op_desc);
  356. GeAttrValue::NAMED_ATTRS aipp_attr;
  357. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  358. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  359. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  360. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  361. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  362. AippConfigInfo aipp_info;
  363. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  364. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  365. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  366. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  367. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  368. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  369. EXPECT_EQ(model.op_list_.size(), 1);
  370. }
  371. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  372. DavinciModel model(0, nullptr);
  373. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  374. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  375. model.runtime_param_.mem_size = 5120000;
  376. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  377. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  378. TensorUtils::SetSize(tensor, 512);
  379. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  380. op_desc->AddInputDesc(tensor);
  381. op_desc->AddOutputDesc(tensor);
  382. op_desc->SetInputOffset({1024});
  383. op_desc->SetOutputOffset({1024});
  384. NodePtr node = graph->AddNode(op_desc);
  385. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  386. InputAippType aipp_type;
  387. size_t aipp_index = 0;
  388. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  389. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  390. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  391. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  392. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  393. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  394. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  395. EXPECT_EQ(model.op_list_.size(), 1);
  396. }
  397. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  398. DavinciModel model(0, nullptr);
  399. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  400. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  401. model.runtime_param_.mem_size = 5120000;
  402. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  403. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  404. TensorUtils::SetSize(tensor, 512);
  405. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  406. op_desc->AddInputDesc(tensor);
  407. op_desc->AddOutputDesc(tensor);
  408. op_desc->SetInputOffset({1024});
  409. op_desc->SetOutputOffset({1024});
  410. NodePtr node = graph->AddNode(op_desc); // op_index 0
  411. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  412. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  413. InputAippType aipp_type;
  414. size_t aipp_index = 0;
  415. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  416. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  417. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  418. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  419. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  420. EXPECT_EQ(model.op_list_.size(), 1);
  421. }
  422. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  423. DavinciModel model(0, nullptr);
  424. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  425. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  426. model.runtime_param_.mem_size = 5120000;
  427. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  428. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  429. TensorUtils::SetSize(tensor, 512);
  430. {
  431. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  432. op_desc->AddInputDesc(tensor);
  433. op_desc->AddOutputDesc(tensor);
  434. op_desc->SetInputOffset({1024});
  435. op_desc->SetOutputOffset({1024});
  436. NodePtr node = graph->AddNode(op_desc); // op_index 0
  437. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  438. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  439. }
  440. {
  441. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  442. op_desc->AddInputDesc(tensor);
  443. op_desc->AddOutputDesc(tensor);
  444. op_desc->SetInputOffset({1024});
  445. op_desc->SetOutputOffset({1024});
  446. NodePtr node = graph->AddNode(op_desc); // op_index 1
  447. }
  448. InputAippType aipp_type;
  449. size_t aipp_index = 0;
  450. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  451. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  452. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  453. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  454. EXPECT_EQ(aipp_index, 1);
  455. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  456. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  457. EXPECT_EQ(model.op_list_.size(), 2);
  458. }
  459. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  460. DavinciModel model(0, nullptr);
  461. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  462. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  463. model.runtime_param_.mem_size = 5120000;
  464. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  465. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  466. TensorUtils::SetSize(tensor, 512);
  467. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  468. op_desc->AddInputDesc(tensor);
  469. op_desc->AddOutputDesc(tensor);
  470. op_desc->SetInputOffset({1024});
  471. op_desc->SetOutputOffset({1024});
  472. NodePtr node = graph->AddNode(op_desc); // op_index 0
  473. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  474. InputAippType aipp_type;
  475. size_t aipp_index = 0;
  476. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  477. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  478. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  479. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  480. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  481. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  482. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  483. EXPECT_EQ(model.op_list_.size(), 1);
  484. }
  485. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  486. DavinciModel model(0, nullptr);
  487. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  488. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  489. model.runtime_param_.mem_size = 5120000;
  490. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  491. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  492. TensorUtils::SetSize(tensor, 512);
  493. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  494. op_desc->AddInputDesc(tensor);
  495. op_desc->AddOutputDesc(tensor);
  496. op_desc->SetInputOffset({1024});
  497. op_desc->SetOutputOffset({1024});
  498. NodePtr node = graph->AddNode(op_desc); // op_index 0
  499. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  500. InputAippType aipp_type;
  501. size_t aipp_index = 0;
  502. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  503. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  504. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  505. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  506. EXPECT_EQ(model.op_list_.size(), 1);
  507. }
  508. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  509. DavinciModel model(0, nullptr);
  510. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  511. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  512. model.runtime_param_.mem_size = 5120000;
  513. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  514. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  515. TensorUtils::SetSize(tensor, 512);
  516. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  517. op_desc->AddInputDesc(tensor);
  518. op_desc->AddOutputDesc(tensor);
  519. op_desc->SetInputOffset({1024});
  520. op_desc->SetOutputOffset({1024});
  521. NodePtr node = graph->AddNode(op_desc); // op_index 0
  522. vector<string> inputs = {};
  523. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  524. vector<string> outputs = {};
  525. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  526. OriginInputInfo orig_input_info;
  527. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  528. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  529. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  530. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  531. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  532. EXPECT_EQ(model.op_list_.size(), 1);
  533. }
  534. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  535. DavinciModel model(0, nullptr);
  536. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  537. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  538. model.runtime_param_.mem_size = 5120000;
  539. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  540. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  541. TensorUtils::SetSize(tensor, 512);
  542. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  543. op_desc->AddInputDesc(tensor);
  544. op_desc->AddOutputDesc(tensor);
  545. op_desc->SetInputOffset({1024});
  546. op_desc->SetOutputOffset({1024});
  547. NodePtr node = graph->AddNode(op_desc); // op_index 0
  548. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  549. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  550. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  551. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  552. OriginInputInfo orig_input_info;
  553. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  554. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  555. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  556. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  557. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  558. EXPECT_EQ(model.op_list_.size(), 1);
  559. }
  560. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  561. DavinciModel model(0, nullptr);
  562. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  563. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  564. model.runtime_param_.mem_size = 5120000;
  565. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  566. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  567. TensorUtils::SetSize(tensor, 512);
  568. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  569. op_desc->AddInputDesc(tensor);
  570. op_desc->AddOutputDesc(tensor);
  571. op_desc->SetInputOffset({1024});
  572. op_desc->SetOutputOffset({1024});
  573. NodePtr node = graph->AddNode(op_desc); // op_index 0
  574. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  575. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  576. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  577. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  578. OriginInputInfo orig_input_info;
  579. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  580. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  581. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  582. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  583. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  584. EXPECT_EQ(model.op_list_.size(), 1);
  585. }
  586. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  587. DavinciModel model(0, nullptr);
  588. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  589. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  590. model.runtime_param_.mem_size = 5120000;
  591. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  592. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  593. TensorUtils::SetSize(tensor, 512);
  594. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  595. op_desc->AddInputDesc(tensor);
  596. op_desc->AddOutputDesc(tensor);
  597. op_desc->SetInputOffset({1024});
  598. op_desc->SetOutputOffset({1024});
  599. NodePtr node = graph->AddNode(op_desc); // op_index 0
  600. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  601. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  602. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  603. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  604. vector<InputOutputDims> input_dims;
  605. vector<InputOutputDims> output_dims;
  606. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  607. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  608. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  609. EXPECT_EQ(input_dims.size(), 1);
  610. EXPECT_EQ(output_dims.size(), 1);
  611. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  612. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  613. EXPECT_EQ(model.op_list_.size(), 1);
  614. }
  615. // test label_set_task Init
  616. TEST_F(UtestDavinciModel, label_task_success) {
  617. DavinciModel model(0, nullptr);
  618. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  619. GeModelPtr ge_model = make_shared<GeModel>();
  620. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  621. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  622. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  623. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  624. ge_model->SetModelTaskDef(model_task_def);
  625. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  626. TensorUtils::SetSize(tensor, 64);
  627. uint32_t op_index = 0;
  628. {
  629. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  630. op_desc->AddInputDesc(tensor);
  631. op_desc->SetInputOffset({1024});
  632. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  633. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  634. domi::TaskDef *task_def1 = model_task_def->add_task();
  635. task_def1->set_stream_id(0);
  636. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  637. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  638. label_task_def->set_op_index(op_index++);
  639. label_task_def->set_label_max(2);
  640. }
  641. {
  642. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  643. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  644. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  645. domi::TaskDef *task_def1 = model_task_def->add_task();
  646. task_def1->set_stream_id(0);
  647. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  648. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  649. label_task_def->set_op_index(op_index++);
  650. }
  651. {
  652. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  653. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  654. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  655. domi::TaskDef *task_def2 = model_task_def->add_task();
  656. task_def2->set_stream_id(0);
  657. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  658. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  659. label_task_def->set_op_index(op_index++);
  660. }
  661. {
  662. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  663. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  664. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  665. domi::TaskDef *task_def1 = model_task_def->add_task();
  666. task_def1->set_stream_id(0);
  667. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  668. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  669. label_task_def->set_op_index(op_index++);
  670. }
  671. {
  672. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  673. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  674. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  675. domi::TaskDef *task_def1 = model_task_def->add_task();
  676. task_def1->set_stream_id(0);
  677. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  678. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  679. label_task_def->set_op_index(op_index++);
  680. }
  681. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  682. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  683. EXPECT_EQ(model.Init(), SUCCESS);
  684. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  685. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  686. EXPECT_EQ(model.task_list_.size(), 5);
  687. }
  688. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示