You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model.h 33 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  17. #define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  18. #include <map>
  19. #include <memory>
  20. #include <set>
  21. #include <string>
  22. #include <thread>
  23. #include <vector>
  24. #include "common/ge_types.h"
  25. #include "common/helper/model_helper.h"
  26. #include "common/helper/om_file_helper.h"
  27. #include "common/opskernel/ge_task_info.h"
  28. #include "common/properties_manager.h"
  29. #include "common/dump/opdebug_register.h"
  30. #include "common/types.h"
  31. #include "framework/common/util.h"
  32. #include "graph/debug/ge_attr_define.h"
  33. #include "graph/load/model_manager/aipp_utils.h"
  34. #include "graph/load/model_manager/data_dumper.h"
  35. #include "graph/load/model_manager/data_inputer.h"
  36. #include "graph/load/model_manager/model_utils.h"
  37. #include "graph/load/model_manager/zero_copy_offset.h"
  38. #include "graph/load/model_manager/zero_copy_task.h"
  39. #include "graph/model.h"
  40. #include "graph/node.h"
  41. #include "graph/op_desc.h"
  42. #include "graph/operator.h"
  43. #include "graph/utils/attr_utils.h"
  44. #include "graph/utils/tensor_utils.h"
  45. #include "mmpa/mmpa_api.h"
  46. #include "proto/task.pb.h"
  47. #include "task_info/task_info.h"
  48. #include "graph/common/local_context.h"
  49. using std::mutex;
  50. using std::thread;
  51. using std::multimap;
  52. namespace ge {
  53. // op debug need 2048 bits buffer
  54. const size_t kOpDebugMemorySize = 2048UL;
  55. const size_t kDebugP2pSize = 8UL;
  56. typedef enum tagModelProcStage {
  57. MODEL_LOAD_START = 1,
  58. MODEL_LOAD_END,
  59. MODEL_PRE_PROC_START,
  60. MODEL_PRE_PROC_END,
  61. MODEL_INFER_START,
  62. MODEL_INFER_END,
  63. MODEL_AFTER_PROC_START,
  64. MODEL_AFTER_PROC_END,
  65. MODEL_PROC_INVALID,
  66. } ModelProcStage;
  67. struct timeInfo {
  68. uint32_t modelId;
  69. int64_t processBeginTime;
  70. int64_t processEndTime;
  71. int64_t inferenceBeginTime;
  72. int64_t inferenceEndTime;
  73. int64_t dumpBeginTime;
  74. int64_t dumpEndTime;
  75. };
  76. // For super kernel
  77. struct SuperKernelTaskInfo {
  78. uint32_t last_block_dim;
  79. uint32_t last_args_size;
  80. uint32_t last_task_id;
  81. uint32_t last_stream_id;
  82. void *last_stream;
  83. void *last_sm_desc;
  84. vector<void *> kernel_list;
  85. vector<void *> arg_list;
  86. vector<uint32_t> dump_flag_list;
  87. vector<OpDescPtr> op_desc_list;
  88. vector<uintptr_t> dump_args_list;
  89. uint32_t last_dump_flag;
  90. int64_t last_group_key;
  91. uintptr_t last_dump_args;
  92. OpDescPtr last_op;
  93. };
  94. struct TaskMemInfo {
  95. int64_t input_size{0};
  96. int64_t output_size{0};
  97. int64_t weight_size{0};
  98. int64_t workspace_size{0};
  99. int64_t total_size{0};
  100. };
  101. struct ProfileInfo {
  102. FusionOpInfo fusion_info;
  103. TaskMemInfo memory_info;
  104. uint32_t task_count{0};
  105. };
  106. enum ExecuteMode {
  107. INITIALIZATION,
  108. SYNCHRONIZATION,
  109. ASYNCHRONIZATION,
  110. };
  111. // comments
  112. class DavinciModel {
  113. public:
  114. ///
  115. /// @ingroup ge
  116. /// @brief DavinciModel constructor
  117. /// @author
  118. ///
  119. DavinciModel(int32_t priority, const shared_ptr<ModelListener> &listener);
  120. ///
  121. /// @ingroup ge
  122. /// @brief DavinciModel desctructor, free Parse and Init resources
  123. /// @author
  124. ///
  125. ~DavinciModel();
  126. ///
  127. /// @ingroup ge
  128. /// @brief apply model to model_def_
  129. ///
  130. Status Assign(const GeModelPtr &ge_model);
  131. ///
  132. /// @ingroup ge
  133. /// @brief DavinciModel initialization, including Stream, ccHandle, Event, DataInputer, etc
  134. /// @return execute result
  135. /// @author
  136. ///
  137. Status Init(void *dev_ptr = nullptr, size_t memsize = 0, void *weight_ptr = nullptr, size_t weightsize = 0);
  138. ///
  139. /// @ingroup ge
  140. /// @brief ACL case, Load task list with queue.
  141. /// @param [in] input_que_ids: input queue ids from user, nums equal Data Op.
  142. /// @param [in] output_que_ids: input queue ids from user, nums equal NetOutput Op.
  143. /// @return: 0 for success / others for fail
  144. ///
  145. Status SetQueIds(const vector<uint32_t> &input_queue_ids, const vector<uint32_t> &output_queue_ids);
  146. ///
  147. /// @ingroup ge
  148. /// @brief Get DataInputer
  149. /// @return model ID
  150. ///
  151. uint32_t Id() const { return model_id_; }
  152. ///
  153. /// @ingroup ge
  154. /// @brief Get DataInputer
  155. /// @return model ID
  156. ///
  157. void SetId(uint32_t model_id) { model_id_ = model_id; }
  158. ///
  159. /// @ingroup ge
  160. /// @brief Get SubModelId
  161. /// @return sub model ID
  162. ///
  163. uint32_t SubModelId() const { return sub_model_id_; }
  164. ///
  165. /// @ingroup ge
  166. /// @brief Get SubModelId
  167. /// @return sub model ID
  168. ///
  169. void SetSubModelId(uint32_t sub_model_id) { sub_model_id_ = sub_model_id; }
  170. static void *Run(DavinciModel *model_pointer);
  171. ///
  172. /// @ingroup ge
  173. /// @brief NnExecute
  174. /// @param [in] stream execute stream
  175. /// @param [in] async_mode is asynchronize mode.
  176. /// @param [in] input_data model input data
  177. /// @param [out] output_data model output data
  178. ///
  179. Status NnExecute(rtStream_t stream, bool async_mode, const InputData &input_data, OutputData &output_data);
  180. ///
  181. /// @ingroup ge
  182. /// @brief lock mutex run flag
  183. /// @author
  184. ///
  185. void LockRunFlg() { mux_run_flg_.lock(); }
  186. ///
  187. /// @ingroup ge
  188. /// @brief unlock mutex run flag
  189. /// @author
  190. ///
  191. void UnlockRunFlg() { mux_run_flg_.unlock(); }
  192. ///
  193. /// @ingroup ge
  194. /// @brief get DataInputer
  195. /// @return DataInputer pointer
  196. ///
  197. DataInputer *const GetDataInputer() const { return data_inputer_; }
  198. // get Stream number
  199. uint32_t StreamNum() const { return runtime_param_.stream_num; }
  200. // get Event number
  201. uint32_t EventNum() const { return runtime_param_.event_num; }
  202. // get Lable number
  203. uint32_t LabelNum() const { return runtime_param_.label_num; }
  204. // get batch number
  205. uint32_t BatchNum() const { return runtime_param_.batch_num; }
  206. // get session id
  207. uint64_t SessionId() const { return runtime_param_.session_id; }
  208. // get model priority
  209. int32_t Priority() const { return priority_; }
  210. // get total mem size
  211. size_t TotalMemSize() const { return runtime_param_.mem_size; }
  212. const map<uint32_t, MemInfo> &P2PMemInfos() const { return runtime_param_.memory_infos; }
  213. // model name
  214. string Name() const { return name_; }
  215. // om_name
  216. string OmName() const { return om_name_; }
  217. // version
  218. uint32_t Version() const { return version_; }
  219. // get total weights mem size
  220. size_t TotalWeightsMemSize() const { return runtime_param_.weight_size; }
  221. size_t TotalVarMemSize() const { return runtime_param_.var_size; }
  222. // get base memory address
  223. uint8_t *MemBase() { return mem_base_; }
  224. // get weight base memory address
  225. uint8_t *WeightsMemBase() { return weights_mem_base_; }
  226. uint8_t *VarMemBase() { return var_mem_base_; }
  227. // get Event list
  228. const vector<rtEvent_t> &GetEventList() const { return event_list_; }
  229. const vector<rtStream_t> &GetStreamList() const { return stream_list_; }
  230. const vector<rtLabel_t> &GetLabelList() const { return label_list_; }
  231. Status GetLabelGotoAddr(uint32_t label_index, rtMemType_t memory_type, void *&addr, uint32_t &size);
  232. Status DestroyThread();
  233. // get Op
  234. OpDescPtr GetOpByIndex(uint32_t index) const {
  235. if (op_list_.find(index) == op_list_.end()) {
  236. return nullptr;
  237. }
  238. return op_list_.at(index);
  239. }
  240. void *GetGlobalStep() const { return global_step_addr_; }
  241. // get task info for profiling
  242. const vector<TaskDescInfo> &GetTaskDescInfo() const { return task_desc_info_; }
  243. // get updated task info list
  244. vector<TaskInfoPtr> GetTaskList() { return task_list_; }
  245. // Modified from KernelTaskInfo.
  246. SuperKernelTaskInfo &GetSuperKernelTaskInfo() { return skt_info_; }
  247. rtModel_t GetRtModelHandle() const { return rt_model_handle_; }
  248. rtStream_t GetRtModelStream() const { return rt_model_stream_; }
  249. uint64_t GetRtBaseAddr() const { return runtime_param_.logic_mem_base; }
  250. uint64_t GetRtWeightAddr() const { return runtime_param_.logic_weight_base; }
  251. uint64_t GetRtVarAddr() const { return runtime_param_.logic_var_base; }
  252. uint32_t GetFlowctrlIndex(uint32_t op_index);
  253. void PushHcclStream(rtStream_t value);
  254. bool IsBroadCastOpData(const NodePtr &var_node);
  255. ///
  256. /// @ingroup ge
  257. /// @brief For TVM Op, avoid Addr Reuse.
  258. /// @return void*
  259. ///
  260. const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = "");
  261. ///
  262. /// @ingroup ge
  263. /// @brief get model input and output desc info
  264. /// @param [out] input_shape model input size
  265. /// @param [out] output_shape model output size
  266. /// @return execute result
  267. ///
  268. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc);
  269. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc,
  270. vector<uint32_t> &input_formats, vector<uint32_t> &output_formats, bool by_dims);
  271. ///
  272. /// @ingroup ge
  273. /// @brief Get dynamic batch_info
  274. /// @param [out] batch_info
  275. /// @param [out] dynamic_type
  276. /// @return execute result
  277. ///
  278. Status GetDynamicBatchInfo(vector<vector<int64_t>> &batch_info, int32_t &dynamic_type) const;
  279. ///
  280. /// @ingroup ge
  281. /// @brief Get combined dynamic dims info
  282. /// @param [out] batch_info
  283. /// @return None
  284. ///
  285. void GetCombinedDynamicDims(vector<vector<int64_t>> &batch_info) const;
  286. void GetUserDesignateShapeOrder(vector<string> &user_input_shape_order) const;
  287. void GetCurShape(vector<int64_t> &batch_info, int32_t &dynamic_type) const;
  288. void GetModelAttr(vector<string> &dynamic_output_shape_info) const;
  289. ///
  290. /// @ingroup ge
  291. /// @brief Get AIPP input info
  292. /// @param [in] index
  293. /// @param [out] aipp_info
  294. /// @return execute result
  295. ///
  296. Status GetAippInfo(uint32_t index, AippConfigInfo &aipp_info) const;
  297. Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index) const;
  298. ///
  299. /// @ingroup ge
  300. /// @brief Get model_id.
  301. /// @return model_id
  302. ///
  303. uint32_t GetModelId() const { return model_id_; }
  304. ///
  305. /// @ingroup ge
  306. /// @brief get unique identification for op when load two or more models
  307. /// @param [in] op_desc : current op.
  308. /// @param [in] string identification: unique identification for current op.
  309. /// @return None
  310. ///
  311. void GetUniqueId(const OpDescPtr &op_desc, string &unique_identification);
  312. Status ReturnResult(uint32_t data_id, const bool rslt_flg, const bool seq_end_flg, OutputData *output_data);
  313. Status ReturnNoOutput(uint32_t data_id);
  314. Status ModelRunStart();
  315. ///
  316. /// @ingroup ge
  317. /// @brief stop run model
  318. /// @return Status
  319. ///
  320. Status ModelRunStop();
  321. ///
  322. /// @ingroup ge
  323. /// @brief model run flag
  324. /// @return Status
  325. ///
  326. bool RunFlag() const { return run_flg_; }
  327. ///
  328. /// @ingroup ge
  329. /// @brief Set Session Id
  330. /// @return void
  331. ///
  332. void SetSessionId(uint64_t session_id) { session_id_ = session_id; }
  333. ///
  334. /// @ingroup ge
  335. /// @brief Get Session Id
  336. /// @return sessionID
  337. ///
  338. uint64_t GetSessionId() const { return session_id_; }
  339. const struct ErrorMessage::Context &GetErrorContext() const { return error_context_; }
  340. ///
  341. /// @ingroup ge
  342. /// @brief SetDeviceId
  343. /// @return void
  344. ///
  345. void SetDeviceId(uint32_t device_id) { device_id_ = device_id; }
  346. ///
  347. /// @ingroup ge
  348. /// @brief Get device Id
  349. /// @return device id
  350. ///
  351. uint32_t GetDeviceId() const { return device_id_; }
  352. bool NeedDestroyAicpuKernel() const { return need_destroy_aicpu_kernel_; }
  353. Status UpdateSessionId(uint64_t session_id);
  354. const RuntimeParam &GetRuntimeParam() { return runtime_param_; }
  355. int32_t GetDataInputTid() const { return dataInputTid; }
  356. void SetDataInputTid(int32_t data_input_tid) { dataInputTid = data_input_tid; }
  357. void DisableZeroCopy(const void *addr);
  358. bool GetOpDugReg() const { return is_op_debug_reg_; }
  359. ///
  360. /// @ingroup ge
  361. /// @brief Save outside address of Data or NetOutput used info for ZeroCopy.
  362. /// @param [in] const OpDescPtr &op_desc: current op desc
  363. /// @param [in] const vector<void *> &outside_addrs: address of task
  364. /// @param [in] const void *args_offset: arguments address save the address.
  365. /// @return None.
  366. ///
  367. void SetZeroCopyAddr(const OpDescPtr &op_desc, const vector<void *> &outside_addrs, const void *info, void *args,
  368. size_t size, size_t offset);
  369. void SetDynamicSize(const vector<uint64_t> &batch_num, int32_t dynamic_type);
  370. bool GetL1FusionEnableOption() { return is_l1_fusion_enable_; }
  371. void SetProfileTime(ModelProcStage stage, int64_t endTime = 0);
  372. int64_t GetLoadBeginTime() { return load_begin_time_; }
  373. int64_t GetLoadEndTime() { return load_end_time_; }
  374. Status ReportProfilingData();
  375. void SaveDumpOpInfo(const RuntimeParam &model_param, const OpDescPtr &op, uint32_t task_id, uint32_t stream_id) {
  376. data_dumper_.SaveDumpOpInfo(model_param, op, task_id, stream_id);
  377. }
  378. void SaveDumpTask(uint32_t task_id, uint32_t stream_id, const shared_ptr<OpDesc> &op_desc, uintptr_t args) {
  379. data_dumper_.SaveDumpTask(task_id, stream_id, op_desc, args);
  380. }
  381. void SetKnownShapeGlobalStep(void *global_step) {
  382. known_shape_global_step_ = global_step;
  383. }
  384. void DumperShrink() {
  385. data_dumper_.DumpShrink();
  386. }
  387. void SetEndGraphId(uint32_t task_id, uint32_t stream_id);
  388. DavinciModel &operator=(const DavinciModel &model) = delete;
  389. DavinciModel(const DavinciModel &model) = delete;
  390. const map<int64_t, vector<rtStream_t>> &GetHcclFolowStream() {
  391. return main_follow_stream_mapping_;
  392. }
  393. void SaveHcclFollowStream(int64_t main_stream_id, rtStream_t stream);
  394. void InitRuntimeParams();
  395. Status InitVariableMem();
  396. void UpdateMemBase(uint8_t *mem_base) {
  397. runtime_param_.mem_base = mem_base;
  398. mem_base_ = mem_base;
  399. }
  400. void SetTotalArgsSize(uint32_t args_size) { total_args_size_ += args_size; }
  401. uint32_t GetTotalArgsSize() { return total_args_size_; }
  402. void *GetCurrentArgsAddr(uint32_t offset) {
  403. void *cur_args = static_cast<char *>(args_) + offset;
  404. return cur_args;
  405. }
  406. void SetTotalIOAddrs(const vector<void *> &io_addrs);
  407. void SetHybridArgsSize(uint32_t args_size) { total_hybrid_args_size_ += args_size; }
  408. uint32_t GetHybridArgsSize() {
  409. return total_hybrid_args_size_;
  410. }
  411. void *GetCurrentHybridArgsAddr(uint32_t offset) {
  412. void *cur_args = static_cast<char *>(hybrid_addrs_) + offset;
  413. return cur_args;
  414. }
  415. void SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_size);
  416. int64_t GetFixedAddrsSize(string tensor_name);
  417. void *GetCurrentFixedAddr(int64_t offset) const {
  418. void *cur_addr = static_cast<char *>(fixed_addrs_) + offset;
  419. return cur_addr;
  420. }
  421. uint32_t GetFixedAddrOutputIndex(string tensor_name) {
  422. if (tensor_name_to_peer_output_index_.find(tensor_name) != tensor_name_to_peer_output_index_.end()) {
  423. return tensor_name_to_peer_output_index_[tensor_name];
  424. }
  425. return UINT32_MAX;
  426. }
  427. void SetKnownNode(bool known_node) { known_node_ = known_node; }
  428. bool IsKnownNode() { return known_node_; }
  429. Status CheckCapability(rtFeatureType_t featureType, int32_t featureInfo, bool &is_support) const;
  430. Status MallocKnownArgs();
  431. Status UpdateKnownNodeArgs(const vector<void *> &inputs, const vector<void *> &outputs);
  432. Status CreateKnownZeroCopyMap(const vector<void *> &inputs, const vector<void *> &outputs);
  433. Status UpdateKnownZeroCopyAddr(vector<void *> &total_io_addrs, bool update_args = true);
  434. Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) const;
  435. Status GetAllAippInputOutputDims(uint32_t index, vector<InputOutputDims> &input_dims,
  436. vector<InputOutputDims> &output_dims) const;
  437. // om file name
  438. void SetOmName(const string &om_name) { om_name_ = om_name; }
  439. void SetDumpProperties(const DumpProperties &dump_properties) { data_dumper_.SetDumpProperties(dump_properties); }
  440. const DumpProperties &GetDumpProperties() const { return data_dumper_.GetDumpProperties(); }
  441. bool GetOpDescInfo(uint32_t stream_id, uint32_t task_id, OpDescInfo &op_desc_info) const {
  442. return data_dumper_.GetOpDescInfo(stream_id, task_id, op_desc_info);
  443. }
  444. private:
  445. // memory address of weights
  446. uint8_t *weights_mem_base_;
  447. uint8_t *var_mem_base_;
  448. // memory address of model
  449. uintptr_t fixed_mem_base_; // Initial of mem_base_, keep forever.
  450. uint8_t *mem_base_;
  451. uint8_t *p2p_mem_base_;
  452. bool is_inner_mem_base_;
  453. bool is_inner_weight_base_;
  454. bool is_inner_p2p_mem_base_;
  455. // input data manager
  456. DataInputer *data_inputer_;
  457. int64_t load_begin_time_;
  458. int64_t load_end_time_;
  459. struct timeInfo time_info_;
  460. int32_t dataInputTid;
  461. void *GetRunAddress(void *addr) const;
  462. ///
  463. /// @ingroup ge
  464. /// @brief Copy Check input size and model op size.
  465. /// @param [in] const int64_t &input_size: input size.
  466. /// @param [in] const int64_t &op_size: model op size.
  467. /// @param [in] is_dynamic: dynamic batch input flag.
  468. /// @return true if success
  469. ///
  470. bool CheckInputAndModelSize(const int64_t &input_size, const int64_t &op_size, bool is_dynamic);
  471. ///
  472. /// @ingroup ge
  473. /// @brief Set copy only for No task feed NetOutput address.
  474. /// @return None.
  475. ///
  476. void SetCopyOnlyOutput();
  477. ///
  478. /// @ingroup ge
  479. /// @brief Copy Input/Output to model for direct use.
  480. /// @param [in] const InputData &input_data: user input data info.
  481. /// @param [in/out] OutputData &output_data: user output data info.
  482. /// @param [in] bool is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  483. /// @return SUCCESS handle successfully / others handle failed
  484. ///
  485. Status CopyModelData(const InputData &input_data, OutputData &output_data, bool is_dynamic);
  486. ///
  487. /// @ingroup ge
  488. /// @brief Copy Data addr to model for direct use.
  489. /// @param [in] data_info: model memory addr/size map { data_index, { tensor_size, tensor_addr } }.
  490. /// @param [in] is_input: input data or output data
  491. /// @param [in] blobs: user input/output data list.
  492. /// @param [in] is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  493. /// @param [in] batch_label: batch label for multi-batch scenes
  494. /// @return SUCCESS handle successfully / others handle failed
  495. ///
  496. Status UpdateIoTaskArgs(const map<uint32_t, ZeroCopyOffset> &data_info, bool is_input,
  497. const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label);
  498. Status CopyInputData(const InputData &input_data, bool device_data = false);
  499. Status CopyOutputData(uint32_t data_id, OutputData &output_data, rtMemcpyKind_t kind);
  500. Status SyncVarData();
  501. Status InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weight_size);
  502. Status InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size);
  503. void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, ShapeDescription &shape1, ShapeDescription &shape2);
  504. void SetInputDimsInfo(const vector<int64_t> &input_dims, Format &format, ShapeDescription &shape_info);
  505. Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<uint32_t> &input_formats, bool by_dims) const;
  506. Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, vector<uint32_t> &output_formats) const;
  507. Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo);
  508. void UnbindHcomStream();
  509. Status DistributeTask();
  510. void SaveProfilingTaskDescInfo(const OpDescPtr &op, const TaskInfoPtr &task,
  511. const domi::TaskDef &task_def, size_t task_index);
  512. uint8_t *MallocFeatureMapMem(size_t data_size);
  513. uint8_t *MallocWeightsMem(size_t weights_size);
  514. uint8_t *MallocP2PMem(size_t p2p_data_size);
  515. void FreeFeatureMapMem();
  516. void FreeWeightsMem();
  517. void FreeP2PMem();
  518. void ReleaseTask();
  519. void ClearTaskAddrs();
  520. void UnbindTaskSinkStream();
  521. bool IsAicpuKernelConnectSpecifiedLayer();
  522. ///
  523. /// @ingroup ge
  524. /// @brief Reduce memory usage after task sink.
  525. /// @return: void
  526. ///
  527. void Shrink();
  528. ///
  529. /// @ingroup ge
  530. /// @brief Travel all nodes and do some init.
  531. /// @param [in] compute_graph: ComputeGraph to load.
  532. /// @return Status
  533. ///
  534. Status InitNodes(const ComputeGraphPtr &compute_graph);
  535. ///
  536. /// @ingroup ge
  537. /// @brief Data Op Initialize.
  538. /// @param [in] ComputeGraphPtr: root graph of the model.
  539. /// @param [in] NodePtr: Data Op.
  540. /// @param [in/out] data_op_index: index of courrent count.
  541. /// @param [in/out] data_by_index: Data ordered by index.
  542. /// @return Status
  543. ///
  544. Status InitDataOp(const ComputeGraphPtr &graph, const NodePtr &node, uint32_t &data_op_index,
  545. map<uint32_t, OpDescPtr> &data_by_index, set<const void *> &input_outside_addrs);
  546. ///
  547. /// @ingroup ge
  548. /// @brief Sort Data op list by index.
  549. /// @param [in] data_by_index: map of Data Op.
  550. /// @param [in] output_op_list: list of NetOutput op.
  551. /// @return Status
  552. ///
  553. Status GenInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, const vector<OpDescPtr> &output_op_list);
  554. ///
  555. /// @ingroup ge
  556. /// @brief NetOutput Op Initialize.
  557. /// @param [in] ComputeGraphPtr: root graph of the model.
  558. /// @param [in] NodePtr: NetOutput Op.
  559. /// @param [in/out] vector<OpDescPtr>: All NetOutput node in model.
  560. /// @return Status
  561. ///
  562. Status InitNetOutput(const ComputeGraphPtr &graph, const NodePtr &node, vector<OpDescPtr> &output_op_list,
  563. set<const void *> &output_outside_addrs);
  564. ///
  565. /// @ingroup ge
  566. /// @brief Constant Op Init.
  567. /// @return Status
  568. ///
  569. Status InitConstant(const OpDescPtr &op_desc);
  570. Status InitVariable(const OpDescPtr &op_desc, map<string, OpDescPtr> &variable_by_name);
  571. /// @ingroup ge
  572. /// @brief LabelSet Op Initialize.
  573. /// @param [in] op_desc: LabelSet Op descriptor.
  574. /// @return Status
  575. Status InitLabelSet(const OpDescPtr &op_desc);
  576. Status InitStreamSwitch(const OpDescPtr &op_desc);
  577. Status InitStreamActive(const OpDescPtr &op_desc);
  578. Status InitStreamSwitchN(const OpDescPtr &op_desc);
  579. ///
  580. /// @ingroup ge
  581. /// @brief Case Op Init.
  582. /// @return Status
  583. ///
  584. Status InitCase(const OpDescPtr &op_desc);
  585. Status SetDynamicBatchInfo(const OpDescPtr &op_desc, uint32_t batch_num);
  586. ///
  587. /// @ingroup ge
  588. /// @brief TVM Op Init.
  589. /// @return Status
  590. ///
  591. Status InitTbeHandle(const OpDescPtr &op_desc);
  592. void StoreTbeHandle(const string &handle_key);
  593. void CleanTbeHandle();
  594. ///
  595. /// @ingroup ge
  596. /// @brief Make active stream list and bind to model.
  597. /// @return: 0 for success / others for fail
  598. ///
  599. Status BindModelStream();
  600. ///
  601. /// @ingroup ge
  602. /// @brief Init model stream for NN model.
  603. /// @return Status
  604. ///
  605. Status InitModelStream(rtStream_t stream);
  606. ///
  607. /// @ingroup ge
  608. /// @brief ACL, Load task list with queue entrance.
  609. /// @return: 0 for success / others for fail
  610. ///
  611. Status LoadWithQueue();
  612. ///
  613. /// @ingroup ge
  614. /// @brief ACL, Bind Data Op addr to input queue.
  615. /// @return: 0 for success / others for fail
  616. ///
  617. Status BindInputQueue();
  618. Status CpuTaskModelZeroCopy(vector<uintptr_t> &mbuf_list, const map<uint32_t, ZeroCopyOffset> &outside_addrs);
  619. ///
  620. /// @ingroup ge
  621. /// @brief ACL, Bind NetOutput Op addr to output queue.
  622. /// @return: 0 for success / others for fail
  623. ///
  624. Status BindOutputQueue();
  625. Status CpuModelPrepareOutput(uintptr_t addr, uint32_t size);
  626. ///
  627. /// @ingroup ge
  628. /// @brief definiteness queue schedule, bind input queue to task.
  629. /// @param [in] queue_id: input queue id from user.
  630. /// @param [in] addr: Data Op output tensor address.
  631. /// @param [in] size: Data Op output tensor size.
  632. /// @return: 0 for success / others for fail
  633. ///
  634. Status CpuModelDequeue(uint32_t queue_id);
  635. ///
  636. /// @ingroup ge
  637. /// @brief definiteness queue schedule, bind output queue to task.
  638. /// @param [in] queue_id: output queue id from user.
  639. /// @param [in] addr: NetOutput Op input tensor address.
  640. /// @param [in] size: NetOutput Op input tensor size.
  641. /// @return: 0 for success / others for fail
  642. ///
  643. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t addr, uint32_t size);
  644. ///
  645. /// @ingroup ge
  646. /// @brief definiteness queue schedule, active original model stream.
  647. /// @return: 0 for success / others for fail
  648. ///
  649. Status CpuActiveStream();
  650. ///
  651. /// @ingroup ge
  652. /// @brief definiteness queue schedule, wait for end graph.
  653. /// @return: 0 for success / others for fail
  654. ///
  655. Status CpuWaitEndGraph();
  656. Status BindEnqueue();
  657. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t out_mbuf);
  658. ///
  659. /// @ingroup ge
  660. /// @brief definiteness queue schedule, repeat run model.
  661. /// @return: 0 for success / others for fail
  662. ///
  663. Status CpuModelRepeat();
  664. Status InitEntryTask();
  665. Status AddHeadStream();
  666. ///
  667. /// @ingroup ge
  668. /// @brief set ts device.
  669. /// @return: 0 for success / others for fail
  670. ///
  671. Status SetTSDevice();
  672. Status OpDebugRegister();
  673. void OpDebugUnRegister();
  674. void CheckHasHcomOp(const ComputeGraphPtr &graph);
  675. Status DoTaskSink();
  676. void CreateOutput(uint32_t index, const OpDescPtr &op_desc, InputOutputDescInfo &output, uint32_t &format_result);
  677. Status TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id);
  678. void SetDataDumperArgs(const ComputeGraphPtr &graph, const map<string, OpDescPtr> &variable_by_name);
  679. Status InitL1DataDumperArgs();
  680. Status InitModelProfile();
  681. Status SinkModelProfile();
  682. Status SinkTimeProfile(const InputData &current_data);
  683. Status InitOutputTensorInfo(const OpDescPtr &op_desc);
  684. Status GenOutputTensorInfo(OutputData *output_data, vector<OutputTensorInfo> &outputs);
  685. Status InitInputDescInfo(const OpDescPtr &op_desc);
  686. Status InitOutputDescInfo(const OpDescPtr &op_desc, const vector<string> &out_node_name);
  687. Status InitOrigInputInfo(uint32_t index, const OpDescPtr &op_desc);
  688. Status InitAippInfo(uint32_t index, const OpDescPtr &op_desc);
  689. Status InitAippType(uint32_t index, const OpDescPtr &op_desc, const map<uint32_t, OpDescPtr> &data_list);
  690. Status InitAippInputOutputDims(uint32_t index, const OpDescPtr &op_desc);
  691. void ParseAIPPInfo(string in_out_info, InputOutputDims &dims_info);
  692. void SetLabelForDynamic(const NodePtr &node);
  693. void ParseDynamicOutShape(const vector<string> &str_info, vector<vector<int64_t>> &vec_info);
  694. bool IsGetNextSinkDynamic(const OpDescPtr &op_desc);
  695. Status InitRealSizeAndShapeInfo(const ComputeGraphPtr &compute_graph, const NodePtr &node);
  696. void GetAllGearsInfo(const NodePtr &node);
  697. Status GetGetDynamicDimsNodeInfo(const NodePtr &node);
  698. Status GetGearAndRealOutSizeInfo(const ComputeGraphPtr &graph, const NodePtr &node);
  699. Status GetRealOutputSizeOfCase(const ComputeGraphPtr &graph, size_t input_index, const NodePtr &case_node);
  700. Status GetGearAndRealOutShapeInfo(const ComputeGraphPtr &graph, const NodePtr &node);
  701. bool is_weight_mem_has_inited_;
  702. bool is_feature_map_mem_has_inited_;
  703. uint32_t model_id_;
  704. uint32_t runtime_model_id_;
  705. uint32_t sub_model_id_ = 0;
  706. string name_;
  707. // used for inference data dump
  708. string om_name_;
  709. uint32_t version_;
  710. GeModelPtr ge_model_; // release after DavinciModel::Init
  711. bool need_destroy_aicpu_kernel_{false};
  712. map<uint32_t, OpDescPtr> op_list_; // release after DavinciModel::Init
  713. map<string, GeTensorDesc> broadcast_variable_;
  714. void *global_step_addr_{nullptr};
  715. uint64_t global_step_size_{0};
  716. map<uint32_t, ZeroCopyOffset> input_data_info_;
  717. map<uint32_t, ZeroCopyOffset> output_data_info_;
  718. set<const void *> real_virtual_addrs_;
  719. // output op: save cce op actual needed memory size
  720. vector<int64_t> output_memory_size_list_;
  721. thread thread_id_;
  722. shared_ptr<ModelListener> listener_;
  723. bool run_flg_;
  724. mutex mux_run_flg_;
  725. int32_t priority_;
  726. vector<rtStream_t> stream_list_;
  727. mutex all_hccl_stream_list_mutex_;
  728. vector<rtStream_t> all_hccl_stream_list_;
  729. // for reuse hccl_follow_stream
  730. mutex capacity_of_stream_mutex_;
  731. map<int64_t, vector<rtStream_t>> main_follow_stream_mapping_;
  732. vector<rtEvent_t> event_list_;
  733. vector<rtLabel_t> label_list_;
  734. set<uint32_t> label_id_indication_;
  735. mutex label_args_mutex_;
  736. map<uint32_t, pair<void *, uint32_t>> label_goto_args_;
  737. mutex outside_addrs_mutex_;
  738. vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
  739. set<const void *> copy_only_addrs_; // Address need copy to original place.
  740. vector<TaskInfoPtr> task_list_;
  741. // rt_moodel_handle
  742. rtModel_t rt_model_handle_;
  743. rtStream_t rt_model_stream_;
  744. bool is_inner_model_stream_;
  745. bool is_async_mode_; // For NN execute, Async mode use rtMemcpyAsync on rt_model_stream_.
  746. ExecuteMode last_execute_mode_;
  747. bool is_stream_list_bind_{false};
  748. bool is_pure_head_stream_{false};
  749. rtStream_t rt_head_stream_{nullptr};
  750. rtStream_t rt_entry_stream_{nullptr};
  751. rtAicpuDeployType_t deploy_type_{AICPU_DEPLOY_RESERVED};
  752. // ACL queue schedule, save queue ids for Init.
  753. vector<TaskInfoPtr> cpu_task_list_;
  754. vector<uint32_t> input_queue_ids_; // input queue ids created by caller.
  755. vector<uint32_t> output_queue_ids_; // output queue ids created by caller.
  756. vector<uintptr_t> input_mbuf_list_; // input mbuf created by dequeue task.
  757. vector<uintptr_t> output_mbuf_list_; // output mbuf created by dequeue task.
  758. uint64_t session_id_;
  759. struct ErrorMessage::Context error_context_;
  760. uint32_t device_id_;
  761. mutex flowctrl_op_index_internal_map_mutex_;
  762. map<uint32_t, uint32_t> flowctrl_op_index_internal_map_;
  763. vector<rtStream_t> active_stream_list_;
  764. set<uint32_t> active_stream_indication_;
  765. set<uint32_t> hcom_streams_;
  766. RuntimeParam runtime_param_;
  767. static mutex tvm_bin_mutex_;
  768. set<string> tvm_bin_kernel_;
  769. map<string, uint32_t> used_tbe_handle_map_;
  770. // for profiling task and graph info
  771. vector<TaskDescInfo> task_desc_info_;
  772. std::map<std::string, std::pair<uint32_t, uint32_t>> profiler_report_op_info_;
  773. int64_t maxDumpOpNum_;
  774. // for data dump
  775. DataDumper data_dumper_;
  776. OpdebugRegister opdebug_register_;
  777. uint64_t iterator_count_;
  778. bool is_l1_fusion_enable_;
  779. map<OpDescPtr, void *> saved_task_addrs_; // release after DavinciModel::Init
  780. void *l1_fusion_addr_ = nullptr;
  781. bool known_node_ = false;
  782. uint32_t total_args_size_ = 0;
  783. void *args_ = nullptr;
  784. void *args_host_ = nullptr;
  785. void *fixed_addrs_ = nullptr;
  786. void *hybrid_addrs_ = nullptr;
  787. uint32_t total_hybrid_args_size_ = 0;
  788. int64_t total_fixed_addr_size_ = 0;
  789. map<const void *, void *> known_input_data_info_;
  790. map<const void *, void *> known_output_data_info_;
  791. vector<void *> total_io_addrs_;
  792. vector<vector<int64_t>> batch_info_;
  793. vector<vector<int64_t>> combined_batch_info_;
  794. vector<string> user_designate_shape_order_;
  795. int32_t dynamic_type_ = 0;
  796. bool is_dynamic_ = false;
  797. vector<uint64_t> batch_size_;
  798. // key: input tensor name, generally rts op;
  799. // value: the fixed addr of input anchor, same as the peer output anchor addr of the peer op
  800. map<string, int64_t> tensor_name_to_fixed_addr_size_;
  801. // key: input tensor name, generally rts op; value: the peer output anchor of the peer op
  802. map<string, int64_t> tensor_name_to_peer_output_index_;
  803. // if model is first execute
  804. bool is_first_execute_;
  805. // for op debug
  806. mutex debug_reg_mutex_;
  807. bool is_op_debug_reg_ = false;
  808. bool is_online_infer_dynamic_ = false;
  809. bool is_getnext_sink_dynamic_ = false;
  810. vector<int32_t> cur_dynamic_dims_;
  811. void *netoutput_last_input_addr_ = nullptr;
  812. int64_t netoutput_last_input_size_ = 0;
  813. size_t shape_of_cur_dynamic_dims_ = 0;
  814. // key: input_index: input is merge node; value: each gear info and each output size
  815. map<size_t, map<vector<int32_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_;
  816. // key: input_index: input is merge node; value: each gear info and each output shape
  817. map<size_t, map<vector<int32_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_;
  818. vector<vector<int32_t>> all_gears_info_;
  819. multimap<uint32_t, uint32_t> op_id_map_;
  820. vector<ProfileInfo> profile_list_;
  821. // For super kernel.
  822. SuperKernelTaskInfo skt_info_;
  823. bool has_output_node_ = false;
  824. bool is_dynamic_aipp_ = false;
  825. vector<string> dynamic_output_shape_info_;
  826. vector<vector<void *>> input_addrs_list_;
  827. vector<vector<void *>> output_addrs_list_;
  828. vector<int64_t> output_buffer_size_;
  829. vector<GeShape> output_shape_info_;
  830. map<uint32_t, OriginInputInfo> orig_input_info_;
  831. map<uint32_t, AippConfigInfo> aipp_info_list_;
  832. map<uint32_t, pair<InputAippType, size_t>> aipp_type_list_;
  833. map<uint32_t, pair<vector<InputOutputDims>, vector<InputOutputDims>>> aipp_dims_info_;
  834. vector<InputOutputDescInfo> input_descs_;
  835. vector<InputOutputDescInfo> input_descs_dims_;
  836. vector<uint32_t> input_formats_;
  837. vector<InputOutputDescInfo> output_descs_;
  838. vector<uint32_t> output_formats_;
  839. // known shape node for dump
  840. void *known_shape_global_step_;
  841. };
  842. } // namespace ge
  843. #endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示