You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 36 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <gmock/gmock.h>
  18. #define private public
  19. #define protected public
  20. #include "graph/utils/graph_utils.h"
  21. #include "common/profiling/profiling_manager.h"
  22. #include "graph/load/model_manager/davinci_model.h"
  23. using namespace std;
  24. namespace ge {
  25. extern OpDescPtr CreateOpDesc(string name, string type);
  26. class DModelListener : public ModelListener {
  27. public:
  28. DModelListener(){};
  29. uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<OutputTensorInfo> &outputs) {
  30. return 0;
  31. }
  32. };
  33. shared_ptr<ModelListener> g_local_call_back(new DModelListener());
  34. class UtestDavinciModel : public testing::Test {
  35. protected:
  36. void SetUp() {}
  37. void TearDown() {}
  38. };
  39. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  40. return 0;
  41. }
  42. TEST_F(UtestDavinciModel, init_success) {
  43. DavinciModel model(0, nullptr);
  44. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  45. ProfilingManager::Instance().is_load_profiling_ = true;
  46. GeModelPtr ge_model = make_shared<GeModel>();
  47. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  48. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  49. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  50. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  51. ge_model->SetModelTaskDef(model_task_def);
  52. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  53. TensorUtils::SetSize(tensor, 512);
  54. {
  55. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  56. op_desc->AddInputDesc(tensor);
  57. op_desc->AddOutputDesc(tensor);
  58. op_desc->SetInputOffset({1024});
  59. op_desc->SetOutputOffset({1024});
  60. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  61. }
  62. {
  63. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  64. op_desc->AddInputDesc(tensor);
  65. op_desc->AddOutputDesc(tensor);
  66. op_desc->SetInputOffset({1024});
  67. op_desc->SetOutputOffset({1024});
  68. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  69. domi::TaskDef *task_def = model_task_def->add_task();
  70. task_def->set_stream_id(0);
  71. task_def->set_type(RT_MODEL_TASK_KERNEL);
  72. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  73. kernel_def->set_stub_func("stub_func");
  74. kernel_def->set_args_size(64);
  75. string args(64, '1');
  76. kernel_def->set_args(args.data(), 64);
  77. domi::KernelContext *context = kernel_def->mutable_context();
  78. context->set_op_index(op_desc->GetId());
  79. context->set_kernel_type(2); // ccKernelType::TE
  80. uint16_t args_offset[9] = {0};
  81. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  82. }
  83. {
  84. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  85. op_desc->AddInputDesc(tensor);
  86. op_desc->AddOutputDesc(tensor);
  87. op_desc->SetInputOffset({1024});
  88. op_desc->SetOutputOffset({5120});
  89. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  90. domi::TaskDef *task_def = model_task_def->add_task();
  91. task_def->set_stream_id(0);
  92. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  93. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  94. memcpy_async->set_src(1024);
  95. memcpy_async->set_dst(5120);
  96. memcpy_async->set_dst_max(512);
  97. memcpy_async->set_count(1);
  98. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  99. memcpy_async->set_op_index(op_desc->GetId());
  100. }
  101. {
  102. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  103. op_desc->AddInputDesc(tensor);
  104. op_desc->SetInputOffset({5120});
  105. op_desc->SetSrcName( { "memcpy" } );
  106. op_desc->SetSrcIndex( { 0 } );
  107. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  108. }
  109. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  110. EXPECT_EQ(model.Init(), SUCCESS);
  111. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  112. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  113. EXPECT_EQ(model.task_list_.size(), 2);
  114. OutputData output_data;
  115. vector<OutputTensorInfo> outputs;
  116. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  117. EXPECT_EQ(output_data.blobs.size(), 1);
  118. EXPECT_EQ(outputs.size(), 1);
  119. ProfilingManager::Instance().is_load_profiling_ = false;
  120. }
  121. TEST_F(UtestDavinciModel, CheckCapability) {
  122. DavinciModel model(0, nullptr);
  123. bool is_support = false;
  124. (void)model.CheckCapability(FEATURE_TYPE_MEMORY, MEMORY_INFO_TS_4G_LIMITED, is_support);
  125. }
  126. TEST_F(UtestDavinciModel, init_data_op) {
  127. DavinciModel model(0, nullptr);
  128. model.ge_model_ = make_shared<GeModel>();
  129. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  130. model.runtime_param_.mem_size = 5120000;
  131. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  132. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  133. TensorUtils::SetSize(tensor, 512);
  134. OpDescPtr op_input = CreateOpDesc("data", DATA);
  135. op_input->AddInputDesc(tensor);
  136. op_input->AddOutputDesc(tensor);
  137. op_input->SetInputOffset({1024});
  138. op_input->SetOutputOffset({1024});
  139. NodePtr node_input = graph->AddNode(op_input);
  140. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  141. op_output->AddInputDesc(tensor);
  142. op_output->SetInputOffset({1024});
  143. op_output->SetSrcName( { "data" } );
  144. op_output->SetSrcIndex( { 0 } );
  145. NodePtr node_output = graph->AddNode(op_output);
  146. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  147. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  148. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  149. EXPECT_EQ(model.op_list_.size(), 2);
  150. }
  151. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  152. DavinciModel model(0, nullptr);
  153. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  154. model.runtime_param_.mem_size = 5120000;
  155. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  156. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  157. TensorUtils::SetSize(tensor, 512);
  158. OpDescPtr op_input = CreateOpDesc("data", DATA);
  159. op_input->AddInputDesc(tensor);
  160. op_input->AddOutputDesc(tensor);
  161. op_input->SetInputOffset({1024});
  162. op_input->SetOutputOffset({1024});
  163. NodePtr node = graph->AddNode(op_input);
  164. uint32_t data_op_index = 0;
  165. map<uint32_t, OpDescPtr> data_by_index;
  166. set<const void *> input_outside_addrs;
  167. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  168. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  169. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  170. EXPECT_EQ(data_op_index, 0);
  171. EXPECT_TRUE(data_by_index.empty());
  172. }
  173. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  174. DavinciModel model(0, nullptr);
  175. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  176. model.runtime_param_.mem_size = 5120000;
  177. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  178. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  179. TensorUtils::SetSize(tensor, 512);
  180. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  181. op_output->AddInputDesc(tensor);
  182. op_output->SetInputOffset({1024});
  183. op_output->SetSrcName( { "data" } );
  184. op_output->SetSrcIndex( { 0 } );
  185. NodePtr node = graph->AddNode(op_output);
  186. std::vector<OpDescPtr> output_op_list;
  187. set<const void *> output_outside_addrs;
  188. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  189. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  190. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  191. EXPECT_TRUE(output_op_list.empty());
  192. }
  193. TEST_F(UtestDavinciModel, init_unknown) {
  194. DavinciModel model(0, nullptr);
  195. model.SetKnownNode(true);
  196. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  197. GeModelPtr ge_model = make_shared<GeModel>();
  198. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  199. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  200. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  201. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  202. ge_model->SetModelTaskDef(model_task_def);
  203. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  204. TensorUtils::SetSize(tensor, 512);
  205. OpDescPtr op_input = CreateOpDesc("data", DATA);
  206. op_input->AddInputDesc(tensor);
  207. op_input->AddOutputDesc(tensor);
  208. op_input->SetInputOffset({1024});
  209. op_input->SetOutputOffset({1024});
  210. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  211. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  212. op_kernel->AddInputDesc(tensor);
  213. op_kernel->AddOutputDesc(tensor);
  214. op_kernel->SetInputOffset({1024});
  215. op_kernel->SetOutputOffset({1024});
  216. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  217. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  218. op_memcpy->AddInputDesc(tensor);
  219. op_memcpy->AddOutputDesc(tensor);
  220. op_memcpy->SetInputOffset({1024});
  221. op_memcpy->SetOutputOffset({5120});
  222. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  223. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  224. op_output->AddInputDesc(tensor);
  225. op_output->SetInputOffset({5120});
  226. op_output->SetSrcName( { "memcpy" } );
  227. op_output->SetSrcIndex( { 0 } );
  228. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  229. domi::TaskDef *task_def1 = model_task_def->add_task();
  230. task_def1->set_stream_id(0);
  231. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  232. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  233. kernel_def->set_stub_func("stub_func");
  234. kernel_def->set_args_size(64);
  235. string args(64, '1');
  236. kernel_def->set_args(args.data(), 64);
  237. domi::KernelContext *context = kernel_def->mutable_context();
  238. context->set_op_index(1);
  239. context->set_kernel_type(2); // ccKernelType::TE
  240. uint16_t args_offset[9] = {0};
  241. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  242. domi::TaskDef *task_def2 = model_task_def->add_task();
  243. task_def2->set_stream_id(0);
  244. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  245. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  246. memcpy_async->set_src(1024);
  247. memcpy_async->set_dst(5120);
  248. memcpy_async->set_dst_max(512);
  249. memcpy_async->set_count(1);
  250. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  251. memcpy_async->set_op_index(2);
  252. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  253. ProfilingManager::Instance().is_load_profiling_ = true;
  254. EXPECT_EQ(model.Init(), SUCCESS);
  255. ProfilingManager::Instance().is_load_profiling_ = false;
  256. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  257. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  258. EXPECT_EQ(model.task_list_.size(), 2);
  259. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  260. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  261. vector<string> out_shape_info;
  262. model.GetModelAttr(out_shape_info);
  263. vector<InputOutputDescInfo> input_descs;
  264. vector<InputOutputDescInfo> output_descs;
  265. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  266. int32_t virtual_addr = 0;
  267. const vector<void *> inputs = { &virtual_addr };
  268. const vector<void *> outputs = { &virtual_addr };
  269. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  270. }
  271. TEST_F(UtestDavinciModel, Init_variable_op) {
  272. DavinciModel model(0, g_local_call_back);
  273. model.ge_model_ = make_shared<GeModel>();
  274. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  275. model.runtime_param_.mem_size = 5120000;
  276. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  277. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  278. TensorUtils::SetSize(tensor, 512);
  279. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  280. var1->AddInputDesc(tensor);
  281. var1->AddOutputDesc(tensor);
  282. var1->SetInputOffset({1024});
  283. var1->SetOutputOffset({1024});
  284. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  285. graph->AddNode(var1);
  286. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  287. var2->AddInputDesc(tensor);
  288. var2->AddOutputDesc(tensor);
  289. var2->SetInputOffset({1024});
  290. var2->SetOutputOffset({1024});
  291. graph->AddNode(var2);
  292. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  293. EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
  294. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  295. OutputData output_data;
  296. EXPECT_FALSE(model.has_output_node_);
  297. EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
  298. EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
  299. }
  300. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  301. DavinciModel model(0, nullptr);
  302. model.ge_model_ = make_shared<GeModel>();
  303. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  304. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  305. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  306. op_output->AddInputDesc(tensor);
  307. op_output->SetInputOffset({1024});
  308. NodePtr node_output = graph->AddNode(op_output);
  309. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  310. }
  311. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  312. DavinciModel model(0, nullptr);
  313. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  314. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  315. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  316. data1->AddInputDesc(shape_desc);
  317. data1->AddOutputDesc(shape_desc);
  318. NodePtr data1_node = graph->AddNode(data1);
  319. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  320. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  321. case_node->AddInputDesc(tensor);
  322. case_node->AddOutputDesc(tensor);
  323. NodePtr case1_node = graph->AddNode(case_node);
  324. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  325. output->AddInputDesc(tensor);
  326. output->SetSrcName( { "case1" } );
  327. output->SetSrcIndex( { 0 } );
  328. NodePtr output_node = graph->AddNode(output);
  329. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  330. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  331. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  332. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  333. model.is_getnext_sink_dynamic_ = false;
  334. model.is_online_infer_dynamic_ = true;
  335. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  336. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  337. EXPECT_EQ(ret, SUCCESS);
  338. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  339. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  340. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  341. EXPECT_EQ(ret, SUCCESS);
  342. }
  343. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  344. DavinciModel model(0, nullptr);
  345. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  346. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  347. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  348. data1->AddInputDesc(shape_desc);
  349. data1->AddOutputDesc(shape_desc);
  350. NodePtr data1_node = graph->AddNode(data1);
  351. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  352. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  353. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  354. shape_node->AddInputDesc(in_tensor);
  355. shape_node->AddOutputDesc(out_tensor);
  356. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  357. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  358. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  359. output->AddInputDesc(tensor);
  360. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  361. output->SetSrcIndex( { 0, 1 } );
  362. NodePtr output_node = graph->AddNode(output);
  363. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  364. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  365. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  366. model.is_getnext_sink_dynamic_ = true;
  367. model.is_online_infer_dynamic_ = false;
  368. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  369. EXPECT_EQ(ret, SUCCESS);
  370. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  371. model.runtime_param_.mem_size = 4;
  372. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  373. EXPECT_EQ(ret, SUCCESS);
  374. }
  375. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  376. DavinciModel model(0, nullptr);
  377. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  378. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  379. model.runtime_param_.mem_size = 5120000;
  380. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  381. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  382. TensorUtils::SetSize(tensor, 512);
  383. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  384. op_desc->AddInputDesc(tensor);
  385. op_desc->AddOutputDesc(tensor);
  386. op_desc->SetInputOffset({1024});
  387. op_desc->SetOutputOffset({1024});
  388. NodePtr node = graph->AddNode(op_desc);
  389. GeAttrValue::NAMED_ATTRS aipp_attr;
  390. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  391. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  392. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  393. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  394. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  395. AippConfigInfo aipp_info;
  396. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  397. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  398. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  399. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  400. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  401. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  402. EXPECT_EQ(model.op_list_.size(), 1);
  403. }
  404. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  405. DavinciModel model(0, nullptr);
  406. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  407. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  408. model.runtime_param_.mem_size = 5120000;
  409. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  410. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  411. TensorUtils::SetSize(tensor, 512);
  412. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  413. op_desc->AddInputDesc(tensor);
  414. op_desc->AddOutputDesc(tensor);
  415. op_desc->SetInputOffset({1024});
  416. op_desc->SetOutputOffset({1024});
  417. NodePtr node = graph->AddNode(op_desc);
  418. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  419. InputAippType aipp_type;
  420. size_t aipp_index = 0;
  421. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  422. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  423. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  424. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  425. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  426. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  427. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  428. EXPECT_EQ(model.op_list_.size(), 1);
  429. }
  430. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  431. DavinciModel model(0, nullptr);
  432. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  433. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  434. model.runtime_param_.mem_size = 5120000;
  435. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  436. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  437. TensorUtils::SetSize(tensor, 512);
  438. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  439. op_desc->AddInputDesc(tensor);
  440. op_desc->AddOutputDesc(tensor);
  441. op_desc->SetInputOffset({1024});
  442. op_desc->SetOutputOffset({1024});
  443. NodePtr node = graph->AddNode(op_desc); // op_index 0
  444. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  445. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  446. InputAippType aipp_type;
  447. size_t aipp_index = 0;
  448. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  449. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  450. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  451. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  452. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  453. EXPECT_EQ(model.op_list_.size(), 1);
  454. }
  455. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  456. DavinciModel model(0, nullptr);
  457. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  458. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  459. model.runtime_param_.mem_size = 5120000;
  460. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  461. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  462. TensorUtils::SetSize(tensor, 512);
  463. {
  464. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  465. op_desc->AddInputDesc(tensor);
  466. op_desc->AddOutputDesc(tensor);
  467. op_desc->SetInputOffset({1024});
  468. op_desc->SetOutputOffset({1024});
  469. NodePtr node = graph->AddNode(op_desc); // op_index 0
  470. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  471. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  472. }
  473. {
  474. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  475. op_desc->AddInputDesc(tensor);
  476. op_desc->AddOutputDesc(tensor);
  477. op_desc->SetInputOffset({1024});
  478. op_desc->SetOutputOffset({1024});
  479. NodePtr node = graph->AddNode(op_desc); // op_index 1
  480. }
  481. InputAippType aipp_type;
  482. size_t aipp_index = 0;
  483. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  484. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  485. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  486. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  487. EXPECT_EQ(aipp_index, 1);
  488. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  489. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  490. EXPECT_EQ(model.op_list_.size(), 2);
  491. }
  492. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  493. DavinciModel model(0, nullptr);
  494. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  495. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  496. model.runtime_param_.mem_size = 5120000;
  497. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  498. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  499. TensorUtils::SetSize(tensor, 512);
  500. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  501. op_desc->AddInputDesc(tensor);
  502. op_desc->AddOutputDesc(tensor);
  503. op_desc->SetInputOffset({1024});
  504. op_desc->SetOutputOffset({1024});
  505. NodePtr node = graph->AddNode(op_desc); // op_index 0
  506. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  507. InputAippType aipp_type;
  508. size_t aipp_index = 0;
  509. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  510. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  511. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  512. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  513. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  514. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  515. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  516. EXPECT_EQ(model.op_list_.size(), 1);
  517. }
  518. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  519. DavinciModel model(0, nullptr);
  520. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  521. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  522. model.runtime_param_.mem_size = 5120000;
  523. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  524. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  525. TensorUtils::SetSize(tensor, 512);
  526. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  527. op_desc->AddInputDesc(tensor);
  528. op_desc->AddOutputDesc(tensor);
  529. op_desc->SetInputOffset({1024});
  530. op_desc->SetOutputOffset({1024});
  531. NodePtr node = graph->AddNode(op_desc); // op_index 0
  532. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  533. InputAippType aipp_type;
  534. size_t aipp_index = 0;
  535. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  536. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  537. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  538. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  539. EXPECT_EQ(model.op_list_.size(), 1);
  540. }
  541. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  542. DavinciModel model(0, nullptr);
  543. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  544. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  545. model.runtime_param_.mem_size = 5120000;
  546. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  547. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  548. TensorUtils::SetSize(tensor, 512);
  549. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  550. op_desc->AddInputDesc(tensor);
  551. op_desc->AddOutputDesc(tensor);
  552. op_desc->SetInputOffset({1024});
  553. op_desc->SetOutputOffset({1024});
  554. NodePtr node = graph->AddNode(op_desc); // op_index 0
  555. vector<string> inputs = {};
  556. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  557. vector<string> outputs = {};
  558. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  559. OriginInputInfo orig_input_info;
  560. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  561. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  562. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  563. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  564. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  565. EXPECT_EQ(model.op_list_.size(), 1);
  566. }
  567. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  568. DavinciModel model(0, nullptr);
  569. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  570. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  571. model.runtime_param_.mem_size = 5120000;
  572. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  573. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  574. TensorUtils::SetSize(tensor, 512);
  575. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  576. op_desc->AddInputDesc(tensor);
  577. op_desc->AddOutputDesc(tensor);
  578. op_desc->SetInputOffset({1024});
  579. op_desc->SetOutputOffset({1024});
  580. NodePtr node = graph->AddNode(op_desc); // op_index 0
  581. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  582. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  583. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  584. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  585. OriginInputInfo orig_input_info;
  586. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  587. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  588. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  589. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  590. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  591. EXPECT_EQ(model.op_list_.size(), 1);
  592. }
  593. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  594. DavinciModel model(0, nullptr);
  595. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  596. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  597. model.runtime_param_.mem_size = 5120000;
  598. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  599. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  600. TensorUtils::SetSize(tensor, 512);
  601. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  602. op_desc->AddInputDesc(tensor);
  603. op_desc->AddOutputDesc(tensor);
  604. op_desc->SetInputOffset({1024});
  605. op_desc->SetOutputOffset({1024});
  606. NodePtr node = graph->AddNode(op_desc); // op_index 0
  607. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  608. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  609. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  610. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  611. OriginInputInfo orig_input_info;
  612. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  613. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  614. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  615. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  616. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  617. EXPECT_EQ(model.op_list_.size(), 1);
  618. }
  619. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  620. DavinciModel model(0, nullptr);
  621. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  622. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  623. model.runtime_param_.mem_size = 5120000;
  624. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  625. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  626. TensorUtils::SetSize(tensor, 512);
  627. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  628. op_desc->AddInputDesc(tensor);
  629. op_desc->AddOutputDesc(tensor);
  630. op_desc->SetInputOffset({1024});
  631. op_desc->SetOutputOffset({1024});
  632. NodePtr node = graph->AddNode(op_desc); // op_index 0
  633. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  634. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  635. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  636. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  637. vector<InputOutputDims> input_dims;
  638. vector<InputOutputDims> output_dims;
  639. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  640. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  641. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  642. EXPECT_EQ(input_dims.size(), 1);
  643. EXPECT_EQ(output_dims.size(), 1);
  644. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  645. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  646. EXPECT_EQ(model.op_list_.size(), 1);
  647. }
  648. // test label_set_task Init
  649. TEST_F(UtestDavinciModel, label_task_success) {
  650. DavinciModel model(0, nullptr);
  651. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  652. GeModelPtr ge_model = make_shared<GeModel>();
  653. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  654. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  655. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  656. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  657. ge_model->SetModelTaskDef(model_task_def);
  658. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  659. TensorUtils::SetSize(tensor, 64);
  660. {
  661. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  662. op_desc->AddInputDesc(tensor);
  663. op_desc->SetInputOffset({1024});
  664. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  665. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  666. domi::TaskDef *task_def1 = model_task_def->add_task();
  667. task_def1->set_stream_id(0);
  668. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  669. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  670. label_task_def->set_op_index(op_desc->GetId());
  671. label_task_def->set_label_max(2);
  672. }
  673. {
  674. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  675. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  676. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  677. domi::TaskDef *task_def1 = model_task_def->add_task();
  678. task_def1->set_stream_id(0);
  679. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  680. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  681. label_task_def->set_op_index(op_desc->GetId());
  682. }
  683. {
  684. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  685. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  686. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  687. domi::TaskDef *task_def2 = model_task_def->add_task();
  688. task_def2->set_stream_id(0);
  689. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  690. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  691. label_task_def->set_op_index(op_desc->GetId());
  692. }
  693. {
  694. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  695. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  696. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  697. domi::TaskDef *task_def1 = model_task_def->add_task();
  698. task_def1->set_stream_id(0);
  699. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  700. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  701. label_task_def->set_op_index(op_desc->GetId());
  702. }
  703. {
  704. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  705. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  706. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  707. domi::TaskDef *task_def1 = model_task_def->add_task();
  708. task_def1->set_stream_id(0);
  709. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  710. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  711. label_task_def->set_op_index(op_desc->GetId());
  712. }
  713. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  714. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  715. EXPECT_EQ(model.Init(), SUCCESS);
  716. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  717. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  718. EXPECT_EQ(model.task_list_.size(), 5);
  719. }
  720. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  721. DavinciModel model(0, nullptr);
  722. model.ge_model_ = make_shared<GeModel>();
  723. model.input_queue_ids_.emplace_back(0);
  724. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  725. EXPECT_EQ(model.input_data_info_.size(), 0);
  726. ZeroCopyOffset zero_copy_offset;
  727. model.input_data_info_[0] = zero_copy_offset;
  728. model.output_queue_ids_.emplace_back(0);
  729. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  730. EXPECT_EQ(model.output_data_info_.size(), 0);
  731. model.output_data_info_[0] = zero_copy_offset;
  732. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  733. EXPECT_EQ(model.active_stream_list_.size(), 0);
  734. }
  735. TEST_F(UtestDavinciModel, Sink_model_profile) {
  736. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  737. ProfileInfo profile;
  738. profile.fusion_info.op_name = "relu";
  739. DavinciModel model(0, nullptr);
  740. model.profile_list_.emplace_back(profile);
  741. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  742. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  743. model.profiler_report_op_info_ = op_info;
  744. model.SinkModelProfile();
  745. }
  746. TEST_F(UtestDavinciModel, Sink_time_profile) {
  747. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  748. DavinciModel model(0, nullptr);
  749. InputData current_data;
  750. model.SinkTimeProfile(current_data);
  751. }
  752. class ClassTest {
  753. public:
  754. virtual ~ClassTest() {}
  755. virtual int func0() {
  756. return 0;
  757. }
  758. virtual int func1(int a) {
  759. return a;
  760. }
  761. virtual int func2(int a, int b) {
  762. return a + b;
  763. }
  764. virtual int func3(int a, int b) const {
  765. return a - b;
  766. }
  767. };
  768. class MockTest : public ClassTest {
  769. public:
  770. MOCK_METHOD0(func0, int());
  771. MOCK_METHOD1(func1, int(int a));
  772. MOCK_METHOD2(func2, int(int a, int b));
  773. MOCK_CONST_METHOD2(func3, int(int a, int b));
  774. };
  775. TEST_F(UtestDavinciModel, simple_test_gmock) {
  776. MockTest mock_stub;
  777. ON_CALL(mock_stub, func0()).WillByDefault(testing::Return(250));
  778. EXPECT_EQ(mock_stub.func0(), 250);
  779. EXPECT_EQ(mock_stub.func0(), 250);
  780. EXPECT_EQ(mock_stub.func0(), 250);
  781. EXPECT_CALL(mock_stub, func1(testing::_)).Times(2).WillOnce(testing::Return(1024)).WillOnce(testing::Return(250));
  782. EXPECT_EQ(mock_stub.func1(1), 1024);
  783. EXPECT_EQ(mock_stub.func1(1), 250);
  784. EXPECT_CALL(mock_stub, func2(testing::_, 5)).Times(3).WillRepeatedly(testing::Return(1023));
  785. EXPECT_EQ(mock_stub.func2(1, 5), 1023);
  786. EXPECT_EQ(mock_stub.func2(2, 5), 1023);
  787. EXPECT_EQ(mock_stub.func2(3, 5), 1023);
  788. }
  789. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示