You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

vector_search.h 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. /**
  2. * Copyright (c) Huawei Technologies Co., Ltd. 2021. All rights reserved.
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file vector_search.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. * @brief Generate ADC(asymmetric distance computation) table. \n
  26. *
  27. * @par Inputs:
  28. * Four inputs, including:
  29. * @li query: A Tensor. Must be one of the following types: float16, float32.
  30. * @li code_book: A Tensor. Must be one of the following types: float16, float32.
  31. * @li centroids: A Tensor. Must be one of the following types: float16, float32.
  32. * @li bucket_list: A Tensor. Must be one of the following types: int32, int64.
  33. *
  34. * @par Outputs:
  35. * adc_tables: A Tensor. Must be one of the following types: float16, float32.
  36. *
  37. * @par Attributes:
  38. * distance_type: The string indicates the distance type of ADC tables. Examples: `"l2sqr", "inner_product"`.
  39. The default value is "l2sqr".
  40. */
  41. REG_OP(GenADC)
  42. .INPUT(query, TensorType({DT_FLOAT16, DT_FLOAT}))
  43. .INPUT(code_book, TensorType({DT_FLOAT16, DT_FLOAT}))
  44. .INPUT(centroids, TensorType({DT_FLOAT16, DT_FLOAT}))
  45. .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
  46. .OUTPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
  47. .ATTR(distance_type, String, "l2sqr")
  48. .OP_END_FACTORY_REG(GenADC)
  49. /**
  50. * @brief Finds values and indices of the "k" largest or least elements for the last dimension. \n
  51. *
  52. * @par Inputs:
  53. * Dynamin inputs, including:
  54. * @li actual_count: A Tensor of type int32, the actual number of pq_distance.
  55. * @li pq_distance: A Tensor, Will be updated after calculation. Must be one of the following types: float32, float16.
  56. * @li grouped_extreme_distance: A Tensor, the extremum in each group. Must be one of the following types: float32, float16.
  57. * @li pq_index: A Tensor of type int32, index corresponding to pq_distance.
  58. * @li pq_ivf: A Tensor of type int32 , the bucket number corresponding to pq_distance.
  59. *
  60. * @par Attributes:
  61. * @li order: A string, indicates the sorting method of topk_pq_distance. \n
  62. * @li k: Int, k maximum or minimum values. \n
  63. * @li group_size: Int, the group size of the extremum. \n
  64. *
  65. * @par Restrictions:
  66. * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  67. */
  68. REG_OP(TopKPQDistance)
  69. .DYNAMIC_INPUT(actual_count, TensorType({DT_INT32}))
  70. .DYNAMIC_INPUT(pq_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  71. .DYNAMIC_INPUT(grouped_extreme_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  72. .DYNAMIC_INPUT(pq_ivf, TensorType({DT_INT32}))
  73. .DYNAMIC_INPUT(pq_index, TensorType({DT_INT32}))
  74. .OUTPUT(topk_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  75. .OUTPUT(topk_ivf, TensorType({DT_INT32}))
  76. .OUTPUT(topk_index, TensorType({DT_INT32}))
  77. .ATTR(order, String, "ASC")
  78. .REQUIRED_ATTR(k, Int)
  79. .REQUIRED_ATTR(group_size, Int)
  80. .OP_END_FACTORY_REG(TopKPQDistance)
  81. /**
  82. * @brief Calculate PQ distance. \n
  83. *
  84. * @par Inputs:
  85. * Six inputs, including:
  86. * @li ivf: A Tensor, dtype is uint8.
  87. * @li bucket_list: A Tensor, dtype is int32.
  88. * @li bucket_base_distance: A Tensor, dtype is float16.
  89. * @li bucket_limits: A Tensor, dtype is int32.
  90. * @li bucket_offsets: A Tensor, dtype is int32.
  91. * @li adc_tables: A Tensor. dtype is float16. \n
  92. *
  93. * @par Outputs:
  94. * Five outputs, including:
  95. * @li actual_count: A Tensor, dtype is int32, the first element means the length of processed ivf.
  96. * @li pq_distance: A Tensor, dtype is float16.
  97. * @li grouped_extreme_distance: A Tensor, dtype is float16.
  98. * @li pq_ivf: A Tensor, dtype is int32.
  99. * @li pq_index: A Tensor, dtype is int32. \n
  100. *
  101. * @par Attributes:
  102. * Five attributes, including:
  103. * @li group_size: A Scalar, indicates the group size when compute grouped_extreme_distance.
  104. * @li total_limit: A Scalar, indicates the total length of the outputs.
  105. * @li extreme_mode: A Scalar, indicates the type of extremum, 0 means minimum, and 1 means maximum.
  106. * @li split_count: A Scalar.
  107. * @li split_index: A Scalar. \n
  108. *
  109. */
  110. REG_OP(ScanPQCodes)
  111. .INPUT(ivf, TensorType({DT_UINT8}))
  112. .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
  113. .INPUT(bucket_base_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  114. .INPUT(bucket_limits, TensorType({DT_INT32}))
  115. .INPUT(bucket_offsets, TensorType({DT_INT64}))
  116. .INPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
  117. .OUTPUT(actual_count, TensorType({DT_INT32}))
  118. .OUTPUT(pq_distance, TensorType({DT_FLOAT16}))
  119. .OUTPUT(grouped_extreme_distance, TensorType({DT_FLOAT16}))
  120. .OUTPUT(pq_ivf, TensorType({DT_INT32}))
  121. .OUTPUT(pq_index, TensorType({DT_INT32}))
  122. .REQUIRED_ATTR(total_limit, Int)
  123. .ATTR(group_size, Int, 64)
  124. .ATTR(extreme_mode, Int, 0)
  125. .ATTR(split_count, Int, 1)
  126. .ATTR(split_index, Int, 0)
  127. .OP_END_FACTORY_REG(ScanPQCodes)
  128. /**
  129. * @brief Calculate buckets limit and offset. \n
  130. * @par Inputs:
  131. * Three inputs, including:
  132. * @li bucket_list: A 1-D tensor of type int32 with the value of ivf_counts and ivf_offset index. \n
  133. * @li ivf_counts: A 1-D tensor of type int32 with the value of ivf counts. \n
  134. * @li ivf_offset: A 1-D tensor of type int32 or int64 with the value of ivf offset. \n
  135. * @par Attributes:
  136. * total_limit: A int64 type maximum value of the sum of ivf_counts corresponding to bucket_list. \n
  137. * @par Outputs:
  138. * @li buckets_limit: A 1-D tensor of type int32 with the sum <= total_limit. \n
  139. * @li buckets_offset: A 1-D tensor of type int32 or int64 with the value of ivf_offset corresponding to bucket_list. \n
  140. */
  141. REG_OP(CalcBucketsLimitAndOffset)
  142. .INPUT(bucket_list, TensorType({DT_INT32}))
  143. .INPUT(ivf_counts, TensorType({DT_INT32}))
  144. .INPUT(ivf_offset, TensorType({DT_INT32, DT_INT64}))
  145. .OUTPUT(buckets_limit, TensorType({DT_INT32}))
  146. .OUTPUT(buckets_offset, TensorType({DT_INT32, DT_INT64}))
  147. .REQUIRED_ATTR(total_limit, Int)
  148. .OP_END_FACTORY_REG(CalcBucketsLimitAndOffset)
  149. /**
  150. *@brief get block tensor according to base addr tensor, for hccl remote read to use.
  151. *@par Inputs:
  152. *@li base_addr: A Tensor of type int64/uint64. \n
  153. *@li row:A Tensor of type int64/uint64. \n
  154. *@li col: A Tensor of type int64/uint64.
  155. *@par Outputs:
  156. *addr_table: list of [rank id, host addr, device addr, read size]
  157. *@par Attributes:
  158. *@li ori_shape: An required list int. Shape of base tensor.
  159. *@li block_size: An required list int. Shape of split block tensor.
  160. *@li ori_storage_mode: An optional string from: '"Matrix", "UT"'. Defaults to
  161. "Matrix". Currently only support Matrix storage
  162. *@li block_storage_mode: An optional string from: '"Matrix", "UT"'. Defaults to
  163. "Matrix". Currently only support Matrix storage
  164. *@li rank_id: An optional int of rank id. Defaults is 0
  165. *@li dtype: An optional Type of base tensor. Defaults is DT_FLOAT
  166. */
  167. REG_OP(IndexToAddr)
  168. .INPUT(base_addr, TensorType({DT_INT64, DT_UINT64}))
  169. .INPUT(x, TensorType({DT_INT64, DT_UINT64}))
  170. .OUTPUT(addrs_table, TensorType({DT_INT64, DT_UINT64}))
  171. .REQUIRED_ATTR(ori_shape, ListInt)
  172. .REQUIRED_ATTR(block_size, ListInt)
  173. .ATTR(ori_storage_mode, String, "Matrix")
  174. .ATTR(block_storage_mode, String, "Matrix")
  175. .ATTR(rank_id, Int, 0)
  176. .ATTR(dtype, Type, DT_FLOAT)
  177. .OP_END_FACTORY_REG(IndexToAddr)
  178. /**
  179. *@brief Convert one-dimensional coordinates to two-dimensional coordinates.
  180. *@par Inputs:
  181. *@li x: A Tensor of type int32/int64/uint64. One-dimensional coordinates.
  182. *@li shape: A Tensor of type int32/int64/uint64. 4D tensor [N,C,H,W].
  183. *@par Outputs:
  184. *@li row: row of two-dimensional
  185. *@li col: col of two-dimensional
  186. *@li n: col number of two-dimensional
  187. */
  188. REG_OP(Coordinates1DTo2D)
  189. .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  190. .INPUT(shape, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  191. .OUTPUT(row, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  192. .OUTPUT(col, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  193. .OUTPUT(n, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  194. .OP_END_FACTORY_REG(Coordinates1DTo2D)
  195. /**
  196. *@brief x[0] is i, x[1] is j and x[2] is k when algorithm is LU,
  197. y = 0 when i >= k && j < k,
  198. y = 1 when i == k && j == k,
  199. y = 2 when i > k && j == k,
  200. y = 3 when i == k && j > k,
  201. y = 4 when i > k && j > k,
  202. default y = 5
  203. use for lu decomposition
  204. *@par Inputs:
  205. *x: A Tensor of type int32/int64/uint64. \n
  206. *@par Attributes:
  207. *algorithm: A string, only support LU now
  208. *@par Outputs:
  209. *y: A Tensor of type int32
  210. */
  211. REG_OP(CaseCondition)
  212. .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  213. .OUTPUT(y, TensorType({DT_INT32}))
  214. .ATTR(algorithm, String, "LU")
  215. .OP_END_FACTORY_REG(CaseCondition)
  216. /**
  217. *@brief write tensor value to tensor x.
  218. *@par Inputs:
  219. *x: A Tensor of type float16/float/double/int32/int64. \n
  220. *begin:A Tensor of type int32/int64. \n
  221. *value: A Tensor of type float16/float/double/int32/int64.
  222. *@par Outputs:
  223. *x: same tensor with input x
  224. */
  225. REG_OP(SliceWrite)
  226. .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
  227. DT_INT32, DT_INT64}))
  228. .INPUT(begin, TensorType({DT_INT32, DT_INT64}))
  229. .INPUT(value, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
  230. DT_INT32, DT_INT64}))
  231. .OUTPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
  232. DT_INT32, DT_INT64}))
  233. .OP_END_FACTORY_REG(SliceWrite)
  234. } // namespace ge
  235. #endif // OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示