You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

execution_engine.cc 21 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/worker/execution_engine.h"
  17. #include "graph/runtime_inference_context.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/tensor_adapter.h"
  20. #include "graph/debug/ge_attr_define.h"
  21. #include "hybrid/node_executor/node_executor.h"
  22. #include "hybrid/executor//worker//shape_inference_engine.h"
  23. #include "common/dump/dump_op.h"
  24. #include "common/profiling/profiling_manager.h"
  25. namespace ge {
  26. namespace hybrid {
  27. namespace {
  28. constexpr int64_t kMaxPadding = 63;
  29. Status LogInputs(const NodeItem &node_item, const TaskContext &task_context) {
  30. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  31. const auto &input_tensor = task_context.GetInput(i);
  32. GE_CHECK_NOTNULL(input_tensor);
  33. const auto &tensor_desc = task_context.GetInputDesc(i);
  34. GE_CHECK_NOTNULL(tensor_desc);
  35. GELOGD("[%s] Print task args. input[%d] = %s, shape = [%s]",
  36. node_item.NodeName().c_str(),
  37. i,
  38. input_tensor->DebugString().c_str(),
  39. tensor_desc->GetShape().ToString().c_str());
  40. }
  41. return SUCCESS;
  42. }
  43. Status LogOutputs(const NodeItem &node_item, const TaskContext &task_context) {
  44. for (auto i = 0; i < task_context.NumOutputs(); ++i) {
  45. const auto &output_tensor = task_context.GetOutput(i);
  46. GE_CHECK_NOTNULL(output_tensor);
  47. const auto &tensor_desc = node_item.MutableOutputDesc(i);
  48. GE_CHECK_NOTNULL(tensor_desc);
  49. GELOGD("[%s] Print task args. output[%d] = %s, shape = [%s]",
  50. node_item.NodeName().c_str(),
  51. i,
  52. output_tensor->DebugString().c_str(),
  53. tensor_desc->MutableShape().ToString().c_str());
  54. }
  55. return SUCCESS;
  56. }
  57. } // namespace
  58. class NodeDoneCallback {
  59. public:
  60. NodeDoneCallback(GraphExecutionContext *graph_context, std::shared_ptr<TaskContext> task_context);
  61. ~NodeDoneCallback() = default;
  62. Status OnNodeDone();
  63. private:
  64. Status PrepareConstInputs(const NodeItem &node_item);
  65. Status DumpDynamicNode();
  66. Status ProfilingReport();
  67. Status GetGraphDescInfo(const NodePtr node, const HybridModel *model,
  68. std::vector<ComputeGraphDescInfo> &compute_graph_info);
  69. Status GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  70. std::vector<TaskDescInfo> &task_desc_info);
  71. GraphExecutionContext *graph_context_;
  72. std::shared_ptr<TaskContext> context_;
  73. DumpOp dump_op_;
  74. };
  75. NodeDoneCallback::NodeDoneCallback(GraphExecutionContext *graph_context,
  76. std::shared_ptr<TaskContext> task_context)
  77. : graph_context_(graph_context), context_(std::move(task_context)) {
  78. }
  79. Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
  80. for (auto output_idx : node_item.to_const_output_id_list) {
  81. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  82. "[PrepareConstInputs] [index = %d] Start",
  83. output_idx);
  84. auto output_tensor = context_->GetOutput(output_idx);
  85. GE_CHECK_NOTNULL(output_tensor);
  86. Tensor tensor;
  87. auto ge_tensor_desc = node_item.MutableOutputDesc(output_idx);
  88. GE_CHECK_NOTNULL(ge_tensor_desc);
  89. tensor.SetTensorDesc(TensorAdapter::GeTensorDesc2TensorDesc(*ge_tensor_desc));
  90. int64_t tensor_size;
  91. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorSizeInBytes(*ge_tensor_desc, tensor_size),
  92. "Failed to invoke GetTensorSizeInBytes");
  93. if (output_tensor->GetSize() < static_cast<size_t>(tensor_size)) {
  94. GELOGE(INTERNAL_ERROR,
  95. "[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s",
  96. node_item.NodeName().c_str(),
  97. output_idx,
  98. tensor_size,
  99. output_tensor->DebugString().c_str());
  100. return INTERNAL_ERROR;
  101. }
  102. vector<uint8_t> host_buffer(static_cast<unsigned long>(tensor_size));
  103. GELOGD("[%s] To cache output[%d] to host, size = %zu",
  104. node_item.NodeName().c_str(),
  105. output_idx,
  106. output_tensor->GetSize());
  107. if (tensor_size > 0) {
  108. GE_CHK_RT_RET(rtMemcpy(host_buffer.data(),
  109. tensor_size,
  110. output_tensor->GetData(),
  111. tensor_size,
  112. RT_MEMCPY_DEVICE_TO_HOST));
  113. }
  114. tensor.SetData(std::move(host_buffer));
  115. string session_id = std::to_string(context_->GetSessionId());
  116. RuntimeInferenceContext *runtime_infer_ctx = nullptr;
  117. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(session_id, &runtime_infer_ctx),
  118. "Failed to get RuntimeInferenceContext, session_id = %s", session_id.c_str());
  119. GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)),
  120. "Failed to SetTensor, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
  121. GELOGD("[%s] Output[%d] cached successfully in session: %s. node_id = %d, shape = [%s]",
  122. node_item.NodeName().c_str(),
  123. output_idx,
  124. session_id.c_str(),
  125. node_item.node_id,
  126. ge_tensor_desc->GetShape().ToString().c_str());
  127. RECORD_CALLBACK_EVENT(graph_context_, node_item.NodeName().c_str(),
  128. "[PrepareConstInputs] [index = %d] End",
  129. output_idx);
  130. }
  131. return SUCCESS;
  132. }
  133. Status NodeDoneCallback::GetTaskDescInfo(const NodePtr node, const HybridModel *model,
  134. std::vector<TaskDescInfo> &task_desc_info) {
  135. GE_CHECK_NOTNULL(node);
  136. GE_CHECK_NOTNULL(model);
  137. GELOGD("GetTaskDescInfo of node [%s] start.", node->GetName().c_str());
  138. auto op_desc = node->GetOpDesc();
  139. std::string op_name = op_desc->GetName();
  140. std::string dynamic_model_name = model->GetModelName();
  141. uint32_t task_id = 0;
  142. uint32_t stream_id = 0;
  143. if (rtGetTaskIdAndStreamID(&task_id, &stream_id) != RT_ERROR_NONE) {
  144. GELOGE(PARAM_INVALID, "Get task_id and stream_id failed.");
  145. return PARAM_INVALID;
  146. }
  147. TaskDescInfo tmp_task_desc_info;
  148. tmp_task_desc_info.model_name = dynamic_model_name;
  149. tmp_task_desc_info.op_name = op_name;
  150. tmp_task_desc_info.block_dim = 0;
  151. auto task_defs = model->GetTaskDefs(node);
  152. if (task_defs != nullptr && (*task_defs).size() > 0) {
  153. const auto &task_def = (*task_defs)[0];
  154. tmp_task_desc_info.block_dim = task_def.kernel().block_dim();
  155. }
  156. tmp_task_desc_info.task_id = task_id;
  157. tmp_task_desc_info.stream_id = stream_id;
  158. GELOGD("GetTaskDescInfo of node [%s] end, task_id[%u], stream_id[%u]",
  159. node->GetName().c_str(), task_id, stream_id);
  160. task_desc_info.emplace_back(tmp_task_desc_info);
  161. return SUCCESS;
  162. }
  163. Status NodeDoneCallback::GetGraphDescInfo(const NodePtr node, const HybridModel *model,
  164. std::vector<ComputeGraphDescInfo> &compute_graph_info) {
  165. GE_CHECK_NOTNULL(node);
  166. GE_CHECK_NOTNULL(model);
  167. GELOGD("GetComputeGraphInfo of node [%s] start.", node->GetName().c_str());
  168. std::string dynamic_model_name = model->GetModelName();
  169. auto op_desc = node->GetOpDesc();
  170. if (op_desc == nullptr) {
  171. GELOGE(PARAM_INVALID, "op_desc is nullptr.");
  172. return PARAM_INVALID;
  173. }
  174. auto op_mode = static_cast<uint32_t>(domi::ImplyType::INVALID);
  175. if (AttrUtils::GetInt(op_desc, ATTR_NAME_IMPLY_TYPE, op_mode) &&
  176. op_mode == static_cast<uint32_t>(domi::ImplyType::TVM)) {
  177. ComputeGraphDescInfo tmp_compute_graph_info;
  178. tmp_compute_graph_info.model_name = dynamic_model_name;
  179. tmp_compute_graph_info.op_name = op_desc->GetName();
  180. tmp_compute_graph_info.op_type = op_desc->GetType();
  181. for (size_t i = 0; i < op_desc->GetAllInputsSize(); ++i) {
  182. GeTensorDescPtr input_desc = op_desc->MutableInputDesc(i);
  183. if (input_desc == nullptr) {
  184. continue;
  185. }
  186. tmp_compute_graph_info.input_format.emplace_back(input_desc->GetFormat());
  187. tmp_compute_graph_info.input_shape.emplace_back(input_desc->GetShape().GetDims());
  188. tmp_compute_graph_info.input_data_type.emplace_back(input_desc->GetDataType());
  189. }
  190. for (size_t j = 0; j < op_desc->GetOutputsSize(); ++j) {
  191. GeTensorDesc output_desc = op_desc->GetOutputDesc(j);
  192. tmp_compute_graph_info.output_format.emplace_back(output_desc.GetFormat());
  193. tmp_compute_graph_info.output_shape.emplace_back(output_desc.GetShape().GetDims());
  194. tmp_compute_graph_info.output_data_type.emplace_back(output_desc.GetDataType());
  195. }
  196. compute_graph_info.emplace_back(tmp_compute_graph_info);
  197. GELOGD("GetComputeGraphInfo of node [%s] end.", node->GetName().c_str());
  198. }
  199. return SUCCESS;
  200. }
  201. Status NodeDoneCallback::ProfilingReport() {
  202. auto node = context_->GetNodeItem().node;
  203. if (node == nullptr) {
  204. GELOGE(PARAM_INVALID, "Get node is nullptr");
  205. return PARAM_INVALID;
  206. }
  207. const auto &op_type = node->GetType();
  208. if (op_type == PARTITIONEDCALL) {
  209. return SUCCESS;
  210. }
  211. GE_CHECK_NOTNULL(graph_context_);
  212. const HybridModel *model = graph_context_->model;
  213. GE_CHECK_NOTNULL(model);
  214. GELOGD("ProfilingReport of node [%s] model [%s] start.", node->GetName().c_str(), model->GetModelName().c_str());
  215. std::vector<TaskDescInfo> task_desc_info;
  216. TaskDescInfo tmp_task_desc_info;
  217. auto profiling_ret = GetTaskDescInfo(node, model, task_desc_info);
  218. if (profiling_ret != RT_ERROR_NONE) {
  219. GELOGE(profiling_ret, "Get task info of node[%s] failed.", node->GetName().c_str());
  220. return profiling_ret;
  221. }
  222. std::vector<ComputeGraphDescInfo> compute_graph_info;
  223. profiling_ret = GetGraphDescInfo(node, model, compute_graph_info);
  224. if (profiling_ret != RT_ERROR_NONE) {
  225. GELOGE(profiling_ret, "Get graph info of node[%s] failed.", node->GetName().c_str());
  226. return profiling_ret;
  227. }
  228. auto &profiling_manager = ProfilingManager::Instance();
  229. profiling_manager.ReportProfilingData(model->GetModelId(), task_desc_info, compute_graph_info);
  230. return SUCCESS;
  231. }
  232. Status NodeDoneCallback::DumpDynamicNode() {
  233. auto node = context_->GetNodeItem().node;
  234. if (node == nullptr) {
  235. GELOGE(PARAM_INVALID, "Get node is nullptr");
  236. return PARAM_INVALID;
  237. }
  238. auto op_desc = node->GetOpDesc();
  239. auto stream = context_->GetStream();
  240. vector<uintptr_t> input_addrs;
  241. vector<uintptr_t> output_addrs;
  242. for (int i = 0; i < context_->NumInputs(); i++) {
  243. auto tensor_value = context_->GetInput(i);
  244. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
  245. uint64_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  246. input_addrs.emplace_back(input_addr);
  247. }
  248. for (int j = 0; j < context_->NumOutputs(); j++) {
  249. auto tensor_value = context_->GetOutput(j);
  250. GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
  251. uint64_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
  252. output_addrs.emplace_back(output_addr);
  253. }
  254. dump_op_.SetDumpInfo(context_->GetDumpProperties(), op_desc, input_addrs, output_addrs, stream);
  255. GE_CHECK_NOTNULL(graph_context_);
  256. const HybridModel *model = graph_context_->model;
  257. GE_CHECK_NOTNULL(model);
  258. std::string dynamic_model_name = model->GetModelName();
  259. uint32_t model_id = model->GetModelId();
  260. dump_op_.SetDynamicModelInfo(dynamic_model_name, model_id);
  261. void *global_step = nullptr;
  262. TensorValue *varible_global_step = context_->GetVariable(NODE_NAME_GLOBAL_STEP);
  263. if (varible_global_step != nullptr) {
  264. global_step = const_cast<void *>(varible_global_step->GetData());
  265. }
  266. void *loop_per_iter = nullptr;
  267. TensorValue *varible_loop_per_iter = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  268. if (varible_loop_per_iter != nullptr) {
  269. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  270. }
  271. void *loop_cond = nullptr;
  272. TensorValue *varible_loop_cond = context_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  273. if (varible_loop_cond != nullptr) {
  274. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  275. }
  276. dump_op_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  277. GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "Failed to launch dump op in hybird model");
  278. auto rt_ret = rtStreamSynchronize(stream);
  279. if (rt_ret != RT_ERROR_NONE) {
  280. GELOGE(rt_ret, "rtStreamSynchronize failed");
  281. return rt_ret;
  282. }
  283. return SUCCESS;
  284. }
  285. Status NodeDoneCallback::OnNodeDone() {
  286. auto &node_item = context_->GetNodeItem();
  287. GELOGI("[%s] Start callback process.", node_item.NodeName().c_str());
  288. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Compute] End");
  289. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] Start");
  290. auto dump_path = context_->GetDumpProperties().GetDumpPath();
  291. if (!dump_path.empty()) {
  292. GELOGI("Start to dump dynamic shape,dump_path is %s", dump_path.c_str());
  293. GE_CHK_STATUS_RET(DumpDynamicNode(), "Failed to dump dynamic node");
  294. }
  295. if (ProfilingManager::Instance().ProfilingModelExecuteOn()) {
  296. GE_CHK_STATUS_RET(ProfilingReport(), "Report node[%s] to profiling failed.",
  297. node_item.NodeName().c_str());
  298. }
  299. // release inputs
  300. for (int i = 0; i < context_->NumInputs(); ++i) {
  301. context_->ReleaseInput(i);
  302. }
  303. GE_CHK_STATUS_RET_NOLOG(PrepareConstInputs(node_item));
  304. if (node_item.shape_inference_type == DEPEND_SHAPE_RANGE || node_item.shape_inference_type == DEPEND_COMPUTE) {
  305. // update output tensor sizes
  306. GE_CHK_STATUS_RET_NOLOG(ShapeInferenceEngine::CalcOutputTensorSizes(node_item));
  307. }
  308. // PropagateOutputs for type == DEPEND_COMPUTE
  309. if (node_item.shape_inference_type == DEPEND_COMPUTE) {
  310. if (graph_context_->trace_enabled) {
  311. (void) LogOutputs(node_item, *context_);
  312. }
  313. GE_CHK_STATUS_RET(context_->PropagateOutputs(),
  314. "[%s] Failed to propagate outputs failed",
  315. node_item.NodeName().c_str());
  316. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[PropagateOutputs] End");
  317. }
  318. // release condition variable
  319. if (node_item.has_observer) {
  320. GELOGI("[%s] Notify observer. node_id = %d", node_item.NodeName().c_str(), node_item.node_id);
  321. context_->NodeDone();
  322. }
  323. RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[Callback] End");
  324. return SUCCESS;
  325. }
  326. Status ExecutionEngine::ExecuteAsync(NodeState &node_state,
  327. const std::shared_ptr<TaskContext> &task_context,
  328. GraphExecutionContext &execution_context) {
  329. GELOGI("[%s] Node is ready for execution", task_context->GetNodeName());
  330. RECORD_EXECUTION_EVENT(&execution_context, task_context->GetNodeName(), "Start");
  331. auto cb = std::shared_ptr<NodeDoneCallback>(new(std::nothrow) NodeDoneCallback(&execution_context, task_context));
  332. GE_CHECK_NOTNULL(cb);
  333. auto callback = [&, cb]() {
  334. auto ret = cb->OnNodeDone();
  335. if (ret != SUCCESS) {
  336. task_context->OnError(ret);
  337. }
  338. };
  339. GE_CHK_STATUS_RET_NOLOG(DoExecuteAsync(node_state, *task_context, execution_context, callback));
  340. GE_CHK_STATUS_RET_NOLOG(PropagateOutputs(*node_state.GetNodeItem(), *task_context, execution_context));
  341. return SUCCESS;
  342. }
  343. Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
  344. TaskContext &task_context,
  345. GraphExecutionContext &context,
  346. const std::function<void()> &callback) {
  347. const auto &task = node_state.GetKernelTask();
  348. if (task == nullptr) {
  349. GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state.GetName().c_str());
  350. return INTERNAL_ERROR;
  351. }
  352. // Wait for dependent nodes(DEPEND_COMPUTE), so that the input tensors are valid.
  353. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[AwaitDependents] Start");
  354. GE_CHK_STATUS_RET(node_state.AwaitInputTensors(context),
  355. "[%s] Failed to wait for dependent nodes.",
  356. node_state.GetName().c_str());
  357. const auto &node_item = *node_state.GetNodeItem();
  358. auto executor = node_item.node_executor;
  359. GE_CHECK_NOTNULL(executor);
  360. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start");
  361. GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context),
  362. "[%s] Failed to prepare task",
  363. node_state.GetName().c_str());
  364. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End");
  365. GELOGD("[%s] Done task preparation successfully.", node_state.GetName().c_str());
  366. if (context.trace_enabled) {
  367. LogInputs(node_item, task_context);
  368. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  369. LogOutputs(node_item, task_context);
  370. }
  371. }
  372. GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "Failed to validate input tensors.");
  373. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ValidateInputTensors] End");
  374. if (context.profiling_level > 0) {
  375. auto *ctx = &context;
  376. const string &name = node_state.GetName();
  377. (void)task_context.RegisterCallback([ctx, name]() {
  378. RECORD_CALLBACK_EVENT(ctx, name.c_str(), "[Compute] Start");
  379. });
  380. }
  381. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] Start");
  382. GE_CHK_STATUS_RET(node_item.node_executor->ExecuteTask(*task, task_context, callback),
  383. "[%s] Failed to execute task",
  384. node_state.GetName().c_str());
  385. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ExecuteTask] End");
  386. GELOGD("[%s] Done task launch successfully.", node_state.GetName().c_str());
  387. return SUCCESS;
  388. }
  389. Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const TaskContext &task_context) {
  390. for (auto i = 0; i < task_context.NumInputs(); ++i) {
  391. const auto &input_tensor = task_context.GetInput(i);
  392. GE_CHECK_NOTNULL(input_tensor);
  393. if (input_tensor->GetData() == nullptr) {
  394. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  395. continue;
  396. }
  397. const auto &tensor_desc = task_context.MutableInputDesc(i);
  398. GE_CHECK_NOTNULL(tensor_desc);
  399. if (tensor_desc->GetDataType() == DT_STRING) {
  400. GELOGD("[%s] Skipping DT_STRING input, index = %d", task_context.GetNodeName(), i);
  401. continue;
  402. }
  403. if (input_tensor->GetData() == nullptr) {
  404. GELOGD("[%s] Skipping null input, index = %d", task_context.GetNodeName(), i);
  405. continue;
  406. }
  407. int64_t expected_size;
  408. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, expected_size));
  409. GELOGD("[%s] Input[%d] expects [%ld] bytes.", task_context.GetNodeName(), i, expected_size);
  410. auto size_diff = expected_size - static_cast<int64_t>(input_tensor->GetSize());
  411. if (size_diff > 0) {
  412. if (size_diff <= kMaxPadding) {
  413. GELOGW("[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
  414. task_context.GetNodeName(),
  415. i,
  416. expected_size,
  417. input_tensor->GetSize());
  418. } else {
  419. GELOGE(INTERNAL_ERROR,
  420. "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
  421. task_context.GetNodeName(),
  422. i,
  423. expected_size,
  424. input_tensor->GetSize());
  425. return INTERNAL_ERROR;
  426. }
  427. }
  428. }
  429. return SUCCESS;
  430. }
  431. Status ExecutionEngine::PropagateOutputs(const NodeItem &node_item,
  432. TaskContext &task_context,
  433. GraphExecutionContext &context) {
  434. if (node_item.shape_inference_type != DEPEND_COMPUTE) {
  435. GE_CHK_STATUS_RET(task_context.PropagateOutputs(),
  436. "[%s] Failed to propagate outputs.",
  437. node_item.NodeName().c_str());
  438. RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PropagateOutputs] End");
  439. GELOGD("[%s] Done propagating outputs successfully.", node_item.NodeName().c_str());
  440. }
  441. return SUCCESS;
  442. }
  443. } // namespace hybrid
  444. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示