|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file nn_training_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
-
- #include "graph/operator_reg.h"
- namespace ge {
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- */
- REG_OP(ApplyAdaMax)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMax)
-
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdaMax instead.
- */
- REG_OP(ApplyAdaMaxD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMaxD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Five inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad.
- */
- REG_OP(SparseApplyAdagrad)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagrad)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagrad instead.
- */
- REG_OP(SparseApplyAdagradD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Six inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li epsilon: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2.
- */
- REG_OP(SparseApplyAdagradV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(epsilon, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li epsilon: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "accum" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagradV2 instead.
- */
- REG_OP(SparseApplyAdagradV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- */
-
- REG_OP(ApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentum)
-
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- * accum: A mutable tensor. Has the same type as input "accum".
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyMomentum instead.
- */
-
- REG_OP(ApplyMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentumD)
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using Nesterov momentum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyKerasMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentum)
-
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var". Should be from a
- * Variable().
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using nesterov momentum
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyKerasMomentum instead.
- */
- REG_OP(ApplyKerasMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentumD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm.
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdamWithAmsgrad instead.
- *
- */
- REG_OP(ApplyAdamWithAmsgradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .OUTPUT(vhat, TensorType::NumberType())
- .REQUIRED_ATTR(beta1, Float)
- .REQUIRED_ATTR(beta2, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgradD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm..
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyAdamWithAmsgrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgrad)
-
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- */
- REG_OP(ApplyPowerSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSign)
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyPowerSign instead.
- */
- REG_OP(ApplyPowerSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSignD)
-
- /**
- *@brief Updates "var" as FOBOS algorithm with fixed learning rate.
- * prox_v = var - alpha * delta
- * var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0}
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li l1: A scalar. Has the same type as "var".
- *@li l2: A scalar. Has the same type as "var".
- *@li delta: A tensor. Has the same type as "var". The change.
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalGradientDescent.
- *
- */
- REG_OP(ApplyProximalGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalGradientDescent)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- */
- REG_OP(ApplyAddSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSign)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li m: A mutable Tensor. Has the same type as "m" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAddSign instead.
- */
- REG_OP(ApplyAddSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSignD)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSProp.
- *
- */
- REG_OP(ApplyCenteredRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSProp)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li mg: A mutable Tensor. Has the same type as "mg".
- *@li ms: A mutable Tensor. Has the same type as "ms".
- *@li mom: A mutable Tensor. Has the same type as "mom" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSPropD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyCenteredRMSProp instead.
- */
- REG_OP(ApplyCenteredRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(mg, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSPropD)
-
- /**
- *@brief Updates "var" by subtracting 'alpha' * 'delta' from it.
- * var -= delta * alpha
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li delta: A tensor for the change. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyGradientDescent.
- *
- */
- REG_OP(ApplyGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyGradientDescent)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagrad)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagrad instead.
- */
- REG_OP(ApplyAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradD)
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- * @li epsilon: A scalar. Has the same type as "var".
- *
- * @par Attributes:
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagradV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2)
-
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- * @par Attributes:
- * @li epsilon: A scalar. Has the same type as "var".
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradV2 instead.
- */
- REG_OP(ApplyAdagradV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- */
- REG_OP(ApplyAdagradDA)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDA)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *gradient_accumulator: A mutable Tensor. Has the same type as "var".
- *gradient_squared_accumulator: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradDA instead.
- */
- REG_OP(ApplyAdagradDAD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(gradient_accumulator, TensorType::NumberType())
- .OUTPUT(gradient_squared_accumulator, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDAD)
-
- /**
- *@brief Returns the dimension index in the destination data format given the one in
- * the source data format.
- *
- *@par Inputs:
- * x: A tensor of type int32 or int64.
- * A Tensor with each element as a dimension index in source data format.
- * Must be in the range [-4, 4).
- *
- *@par Attributes:
- *@li src_format: An optional string. Defaults to NHWC.
- * source data format. Must of length 4.
- *@li dst_format: An optional string. Defaults to NCHW.
- * destination data format. Must of length 4.
- *
- *@par Outputs:
- * y: A tensor. Has the same type as "x". Must be in the range [0, 4).
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator DataFormatDimMap.
- *
- */
- REG_OP(DataFormatDimMap)
- .INPUT(x, TensorType::IndexNumberType())
- .ATTR(src_format, String, "NHWC")
- .ATTR(dst_format, String, "NCHW")
- .OUTPUT(y, TensorType::IndexNumberType())
- .OP_END_FACTORY_REG(DataFormatDimMap)
-
- /**
- * @brief Implements stochastic gradient descent (optionally with momentum).
- * Nesterov momentum is based on the formula from
- * On the importance of initialization and momentum in deep learning.
-
- * @par Inputs:
- * @li parameters: A mutable tensor of type float16 or float32.
- * Specifies the iterable of parameters to optimize or dicts defining parameter
- * groups.
- * @li gradient: A tensor of type float16 or float32.
- * Specifies the gradient of training step.
- * @li learning_rate: A tensor of type float16 or float32.
- * Specifies the learing_rate of training step.
- * @li accum: A tensor of type float16 or float32.
- * Specifies the velocity of training step.
- * @li momentum: A tensor of type float16 or float32.
- * Specifies the momentum factor.
- * @li stat: A tensor of type float16 or float32.
- * Specifies the status representing the first step or not . \n
-
- * @par Attributes:
- * @li dampening: An optional float, specifying the dampening for momentum.
- * Defaults to "0.0".
- * @li weight_decay: An optional float, specifying the L2 penalty. Defaults to
- * "0.0".
- * @li nesterov: An optional bool, specifying whether to enable Nesterov
- * momentum. Defaults to "False" . \n
-
- * @par Outputs:
- * parameters: A mutable tensor same as input "parameters" . \n
-
- * @see ApplyMomentum()
-
- * @par Third-party framework compatibility
- * @li Compatible with the PyTorch operator SGD.
- */
- REG_OP(SGD)
- .INPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(gradient, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(learning_rate, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(accum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(momentum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(stat, TensorType(DT_FLOAT, DT_FLOAT16))
- .OUTPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .ATTR(dampening, Float, 0.0)
- .ATTR(weight_decay, Float, 0.0)
- .ATTR(nesterov, Bool, false)
- .OP_END_FACTORY_REG(SGD)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- */
- REG_OP(ApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSProp)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm, a const input will be
- * considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True", updating
- * of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * var: A mutable tensor. Must have the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyRMSProp instead.
- */
- REG_OP(ApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSPropD)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- *var: A mutable tensor. Must have the same type as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagrad.
- */
- REG_OP(ApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagrad)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- * @li var: A mutable Tensor. Has the same type as "var".
- * @li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagradD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyProximalAdagrad instead.
- */
- REG_OP(ApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagradD)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention.
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
- */
- REG_OP(SparseApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagrad)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.\ n
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyProximalAdagrad instead.
- */
- REG_OP(SparseApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagradD)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- */
- REG_OP(ApplyFtrl)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrl)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "accum".
- *@li linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrl instead.
- */
- REG_OP(ApplyFtrlD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlD)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- */
- REG_OP(ApplyFtrlV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *accum: A mutable Tensor. Has the same type as "accum".
- *linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrlV2 instead.
- */
- REG_OP(ApplyFtrlV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2D)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- * var: A mutable Tensor. Has the same type as intput "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- */
- REG_OP(ApplyAdam)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdam)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdam instead.
- */
- REG_OP(ApplyAdamD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamD)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
- */
- REG_OP(ApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadelta)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var".
- *@li accum_update: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdadelta instead.
- */
- REG_OP(ApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadeltaD)
-
- /**
- * @brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else:
- * var -= accum * lr
- *
- * @par Inputs:
- * Six inputs, including:
- * @li var: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor has the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar has the same type as "var", for the scaling factor.
- * @li x1: A Tensor has type TensorType::NumberType().
- * @li momentum: A scalar has the same type as "var".
- * @li x2: A scalar has the same type as "var".
- *
- * @par Attributes:
- * Two attributes, including:
- * @li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be var - lr * momentum * accum,
- * so in the end, the var you get is actually var - lr * momentum * accum.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * Two outputs, including:
- * @li var: A mutable Tensor has the same type as "var".
- * @li accum: A mutable Tensor has the same type as "var".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentum)
-
- /**
- * @brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else:
- * var -= accum * lr
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor of type float32.
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li lr: A scalar has the same type as "accum", for the scaling factor.
- * @li x1: A Tensor has the same type as "accum".
- * @li momentum: A scalar has the same type as "accum".
- * @li x2: A scalar has the same type as "accum".
- * @li var_copy: A Tensor has type float16.
- *
- * @par Attributes:
- * Two Attributes, including:
- * @li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be var - lr * momentum * accum,
- * so in the end, the var you get is actually var - lr * momentum * accum.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * Three outputs, including:
- * @li var: A Tensor has the type float32.
- * @li var_copy: A Tensor has the type float16.
- * @li accum: A Tensor has the same type as input "accum".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentumExtern)
- .INPUT(var, TensorType(DT_FLOAT))
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .INPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(var, TensorType(DT_FLOAT))
- .OUTPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentumExtern)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li w_square_sum: A Tensor of square_sum(w), has the same type as "w", Must be a scalar.
- * @li g_square_sum: A Tensor of square(g), has the same type as "w", Must be a scalar.
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2Update)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(w_square_sum, TensorType(DT_FLOAT))
- .INPUT(g_square_sum, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2Update)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- */
- REG_OP(SparseApplyFtrl)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrl)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrl instead.
- */
- REG_OP(SparseApplyFtrlD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlD)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Ten inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2.
- */
- REG_OP(SparseApplyFtrlV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(l2_shrinkage, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum" . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2D.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrlV2 instead.
- */
- REG_OP(SparseApplyFtrlV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(l2_shrinkage, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2D)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "mom" and "ms".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", and "mom" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyRMSProp.
- */
- REG_OP(SparseApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSProp)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * a const input will be considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Six inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li ms: A mutable tensor. Must have the same type as input "ms".
- * @li mom: A mutable tensor. Must have the same type as input "mom".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms" and "mom" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyRMSProp instead.
- */
- REG_OP(SparseApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSPropD)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Eight inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "accum", and "accum_update" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum", and "accum_update" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdadelta.
- */
- REG_OP(SparseApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadelta)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * a const input will be considered as an attribute.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "accum", and "accum_update" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li accum: A mutable tensor. Must have the same type as input "accum".
- * @li accum_update: A mutable tensor. Must have the same type as input "accum_update".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum" and "accum_update" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdadelta instead.
- */
- REG_OP(SparseApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadeltaD)
-
-
- /**
- *@brief Clean memory of workspace list . \n
-
- *@par Attributes:
- * @li automic_add_mem_size: sizes of workspaces . \n
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(AtomicAddrClean)
- .ATTR(automic_add_mem_size, ListInt, {})
- .OP_END_FACTORY_REG(AtomicAddrClean)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
|