|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663 |
- /**
- * Copyright (c) Huawei Technologies Co., Ltd. 2020-2021. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file nn_training_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
-
- #include "graph/operator_reg.h"
- namespace ge {
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- */
- REG_OP(ApplyAdaMax)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMax)
-
- /**
- *@brief Updates "var" according to the AdaMax algorithm.
- * t-1 mean previous period.
- * m_t <- beta1 * m{t-1} + (1 - beta1) * grad
- * v_t <- max(beta2 * v{t-1}, abs(grad))
- * var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar. Has the same type as "var".
- *@li lr: learning_rate. A scalar. Has the same type as "var".
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdaMax.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdaMax instead.
- */
- REG_OP(ApplyAdaMaxD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdaMaxD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Five inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad.
- */
- REG_OP(SparseApplyAdagrad)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagrad)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- * Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False" . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdagrad. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagrad instead.
- */
- REG_OP(SparseApplyAdagradD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradD)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Six inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li lr: An NCHW, NHWC, or ND Tensor of type float32.
- *@li epsilon: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type float32 . \n
-
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *var: A Tensor. Has the same type and format as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2.
- */
- REG_OP(SparseApplyAdagradV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(epsilon, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2)
-
- /**
- *@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme . \n
-
- *@par Inputs:
- *Four inputs, including:
- *@li var: An NCHW, NHWC, or ND Tensor of type float32.
- *@li accum: An NCHW, NHWC, or ND Tensor of type float32.
- *@li grad: An NCHW, NHWC, or ND Tensor of type float32.
- *@li indices: An NCHW, NHWC, or ND Tensor of type int32 . \n
-
- *@par Attributes:
- *@li lr: Required, used for computation.
- *@li epsilon: Required, used for computation.
- *@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
- *@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different . \n
-
- *@par Outputs:
- *@li var: A Tensor. Has the same type and format as input "var".
- *@li accum: A Tensor. Has the same type and format as input "accum" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyAdagradV2. \n
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdagradV2 instead.
- */
- REG_OP(SparseApplyAdagradV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .ATTR(update_slots, Bool, true)
- .OP_END_FACTORY_REG(SparseApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *@li momentum: Momentum. Must be a scalar.
-
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- */
-
- REG_OP(ApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentum)
-
-
- /**
- *@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
- * want to use Nesterov momentum.
- * computing process:
- * accum = accum * momentum + grad
- * var -= lr * accum
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", the tensor passed to compute grad will be
- * var - lr * momentum * accum, so in the end, the var you get is actually
- * var - lr * momentum * accum.
- *
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- * accum: A mutable tensor. Has the same type as input "accum".
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyMomentum.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyMomentum instead.
- */
-
- REG_OP(ApplyMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyMomentumD)
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using Nesterov momentum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyKerasMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentum)
-
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - grad * lr
- * if use_nesterov is True:
- * var += accum * momentum - grad * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *@li momentum: A scalar. Has the same type as "var". Should be from a
- * Variable().
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using nesterov momentum
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyKerasMomentum instead.
- */
- REG_OP(ApplyKerasMomentumD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyKerasMomentumD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm.
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdamWithAmsgrad instead.
- *
- */
- REG_OP(ApplyAdamWithAmsgradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .OUTPUT(vhat, TensorType::NumberType())
- .REQUIRED_ATTR(beta1, Float)
- .REQUIRED_ATTR(beta2, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgradD)
-
-
- /**
- *@brief Updates '*var' according to the Adam algorithm..
- * lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
- * vhat_t := max{vhat_{t-1}, v_t}
- * variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li v: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li vhat: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- *@par Attributes:
- *@li beta1: A scalar. Has the same type as "var".
- *@li beta2: A scalar. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var"
- *@li v: A mutable tensor. Has the same type as input "var"
- *@li vhat: A mutable tensor. Has the same type as input "var"
- *
- *@attention Constraints:
- * The input tensors must have the same shape.
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(ApplyAdamWithAmsgrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(vhat, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamWithAmsgrad)
-
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- */
- REG_OP(ApplyPowerSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSign)
-
- /**
- *@brief Updates "var" according to the AddSign update.
- * t-1 mean previous period.
- * m_t <- beta1 * m_{t-1} + (1 - beta1) * grad
- * update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad
- * var <- var - lr * update
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li m: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li logbase: A scalar. Has the same type as "var".
- *@li sign_decay: A scalar. Has the same type as "var".
- *@li beta: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyPowerSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyPowerSign instead.
- */
- REG_OP(ApplyPowerSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(logbase, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyPowerSignD)
-
- /**
- *@brief Updates "var" as FOBOS algorithm with fixed learning rate.
- * prox_v = var - alpha * delta
- * var = sign(prox_v)/(1+alpha * l2) * max{|prox_v|-alpha * l1,0}
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li l1: A scalar. Has the same type as "var".
- *@li l2: A scalar. Has the same type as "var".
- *@li delta: A tensor. Has the same type as "var". The change.
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalGradientDescent.
- *
- */
- REG_OP(ApplyProximalGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalGradientDescent)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- */
- REG_OP(ApplyAddSign)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSign)
-
- /**
- *@brief Updates "var" according to the AddSign update . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li m: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li alpha: A Tensor of the same type as "var". Must be a scalar.
- * @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
- * @li beta: A Tensor of the same type as "var". Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient.
-
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "m" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li m: A mutable Tensor. Has the same type as "m" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAddSign.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAddSign instead.
- */
- REG_OP(ApplyAddSignD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(sign_decay, TensorType::NumberType())
- .INPUT(beta, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAddSignD)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSProp.
- *
- */
- REG_OP(ApplyCenteredRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSProp)
-
- /**
- *@brief Updates "var" according to the centered RMSProp algorithm.
- * The centered RMSProp algorithm uses an estimate of the centered second moment
- * (i.e., the variance) for normalization, as opposed to regular RMSProp, which
- * uses the (uncentered) second moment. This often helps with training, but is
- * slightly more expensive in terms of computation and memory.
- *
- * t-1 mean previous period.
- * mg <- rho * mg{t-1} + (1-rho) * grad
- * ms <- rho * ms{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)
- * var <- var - mom
- *
- *@attention Constraints:
- *@li in dense implementation of this algorithm, mg, ms, and mom will
- * update even if the grad is zero, but in this sparse implementation, mg, ms,
- * and mom will not update in iterations during which the grad is zero.
- *@li the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li mg: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li ms: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li mom: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li rho: A scalar. Has the same type as "var".
- *@li momentum: A tensor. Has the same type as "var".
- *@li epsilon: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li mg: A mutable Tensor. Has the same type as "mg".
- *@li ms: A mutable Tensor. Has the same type as "ms".
- *@li mom: A mutable Tensor. Has the same type as "mom" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyCenteredRMSPropD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyCenteredRMSProp instead.
- */
- REG_OP(ApplyCenteredRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(mg, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(mg, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyCenteredRMSPropD)
-
- /**
- *@brief Updates "var" by subtracting 'alpha' * 'delta' from it.
- * var -= delta * alpha
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li alpha: A scalar. Has the same type as "var".
- *@li delta: A tensor for the change. Has the same type as "var".
- *
- *@par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyGradientDescent.
- *
- */
- REG_OP(ApplyGradientDescent)
- .INPUT(var, TensorType::NumberType())
- .INPUT(alpha, TensorType::NumberType())
- .INPUT(delta, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyGradientDescent)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagrad)
-
- /**
- *@brief Updates "var" according to the adagrad scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum))
- *
- *@attention Constraints:
- * the input tensors must have the same shape.
- *
- *@par Inputs:
- *@li var: A mutable tensor. Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var".
- * Should be from a Variable().
- *@li lr: A scalar. Has the same type as "var".
- *@li grad: A tensor for the gradient. Has the same type as "var".
- *
- *@par Attributes:
- *@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "ms", and "mom" tensors is protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li accum: A mutable tensor. Has the same type as input "var".
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagrad.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagrad instead.
- */
- REG_OP(ApplyAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradD)
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- * @li epsilon: A scalar. Has the same type as "var".
- *
- * @par Attributes:
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- */
- REG_OP(ApplyAdagradV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2)
-
-
- /**
- * @brief Updates "var" according to the adagradv2 scheme.
- * accum += grad * grad
- * var -= lr * grad * (1 / sqrt(accum) + epsilon)
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- * @li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- * @li grad: A tensor for the gradient. Has the same type as "var". Should be
- * from a Variable().
- *
- * @par Attributes:
- * @li epsilon: A scalar. Has the same type as "var".
- * @li update_slots: An optional bool. Defaults to "True".
- * If "True", "accum" will be updated
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * The input tensors must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdagrad.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradV2 instead.
- */
- REG_OP(ApplyAdagradV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(update_slots, Bool, true)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradV2D)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- */
- REG_OP(ApplyAdagradDA)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDA)
-
- /**
- *@brief Updates "var" according to the proximal adagrad scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be one of the following types:
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li gradient_accumulator: A mutable Tensor. Must have the same
- * type as "var". Should be a Variable Tensor.
- * @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar.
- * @li global_step: A Tensor of type int32 or int64.
- * Training step number. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *gradient_accumulator: A mutable Tensor. Has the same type as "var".
- *gradient_squared_accumulator: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdagradDA.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdagradDA instead.
- */
- REG_OP(ApplyAdagradDAD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(gradient_accumulator, TensorType::NumberType())
- .INPUT(gradient_squared_accumulator, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(gradient_accumulator, TensorType::NumberType())
- .OUTPUT(gradient_squared_accumulator, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdagradDAD)
-
- /**
- *@brief Returns the dimension index in the destination data format given the one in
- * the source data format.
- *
- *@par Inputs:
- * x: A tensor of type int32 or int64.
- * A Tensor with each element as a dimension index in source data format.
- * Must be in the range [-4, 4).
- *
- *@par Attributes:
- *@li src_format: An optional string. Defaults to NHWC.
- * source data format. Must of length 4.
- *@li dst_format: An optional string. Defaults to NCHW.
- * destination data format. Must of length 4.
- *
- *@par Outputs:
- * y: A tensor. Has the same type as "x". Must be in the range [0, 4).
- *
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator DataFormatDimMap.
- *
- */
- REG_OP(DataFormatDimMap)
- .INPUT(x, TensorType::IndexNumberType())
- .ATTR(src_format, String, "NHWC")
- .ATTR(dst_format, String, "NCHW")
- .OUTPUT(y, TensorType::IndexNumberType())
- .OP_END_FACTORY_REG(DataFormatDimMap)
-
- /**
- * @brief Implements stochastic gradient descent (optionally with momentum).
- * Nesterov momentum is based on the formula from
- * On the importance of initialization and momentum in deep learning.
-
- * @par Inputs:
- * @li parameters: A mutable tensor of type float16 or float32.
- * Specifies the iterable of parameters to optimize or dicts defining parameter
- * groups.
- * @li gradient: A tensor of type float16 or float32.
- * Specifies the gradient of training step.
- * @li learning_rate: A tensor of type float16 or float32.
- * Specifies the learing_rate of training step.
- * @li accum: A tensor of type float16 or float32.
- * Specifies the velocity of training step.
- * @li momentum: A tensor of type float16 or float32.
- * Specifies the momentum factor.
- * @li stat: A tensor of type float16 or float32.
- * Specifies the status representing the first step or not . \n
-
- * @par Attributes:
- * @li dampening: An optional float, specifying the dampening for momentum.
- * Defaults to "0.0".
- * @li weight_decay: An optional float, specifying the L2 penalty. Defaults to
- * "0.0".
- * @li nesterov: An optional bool, specifying whether to enable Nesterov
- * momentum. Defaults to "False" . \n
-
- * @par Outputs:
- * parameters: A mutable tensor same as input "parameters" . \n
-
- * @see ApplyMomentum()
-
- * @par Third-party framework compatibility
- * @li Compatible with the PyTorch operator SGD.
- */
- REG_OP(SGD)
- .INPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(gradient, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(learning_rate, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(accum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(momentum, TensorType(DT_FLOAT, DT_FLOAT16))
- .INPUT(stat, TensorType(DT_FLOAT, DT_FLOAT16))
- .OUTPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
- .ATTR(dampening, Float, 0.0)
- .ATTR(weight_decay, Float, 0.0)
- .ATTR(nesterov, Bool, false)
- .OP_END_FACTORY_REG(SGD)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- */
- REG_OP(ApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSProp)
-
- /**
- * @brief Updates "var" according to the RMSProp algorithm, a const input will be
- * considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient. Must have the same type as "var".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True", updating
- * of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * var: A mutable tensor. Must have the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in dense implementation of this algorithm, "ms" and "mom" will
- * update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
- * will not update in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
- *
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ApplyRMSProp.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyRMSProp instead.
- */
- REG_OP(ApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyRMSPropD)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- *var: A mutable tensor. Must have the same type as input "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagrad.
- */
- REG_OP(ApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagrad)
-
- /**
- *@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be from a Variable().
- * @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention . \n
-
- *@par Outputs:
- * @li var: A mutable Tensor. Has the same type as "var".
- * @li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyProximalAdagradD.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyProximalAdagrad instead.
- */
- REG_OP(ApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyProximalAdagradD)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention.
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
- */
- REG_OP(SparseApplyProximalAdagrad)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagrad)
-
- /**
- *@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.\ n
- * Compared with op ApplyProximalAdagrad, an additional index tensor is input,
- * Only the indices into the first dimensions of "var" and "accum" are updated . \n
-
- *@par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor.
- * TensorType::NumberType(). Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. Should be greater than or equal to zero.
- * Accum and grad cannot be equal to zero at the same time.
- * @li lr: A Tensor of the same type as "var".
- * Scaling factor. Must be a scalar. Should be greater than zero.
- * @li l1: A Tensor of the same type as "var".
- * L1 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li l2: A Tensor of the same type as "var".
- * L2 regulariation. Must be a scalar. Should be greater than or equal to zero.
- * @li grad: A Tensor. Has the same type as "var".
- * The gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * TensorType::IndexNumberType(). Can contain duplicate values . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the var and accum tensors will be protected by a lock;
- * If "False", the behavior is undefined, but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyProximalAdagrad instead.
- */
- REG_OP(SparseApplyProximalAdagradD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyProximalAdagradD)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- */
- REG_OP(ApplyFtrl)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrl)
-
- /**
- *@brief Updates "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Eight inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "accum".
- *@li linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrl.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrl instead.
- */
- REG_OP(ApplyFtrlD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlD)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- */
- REG_OP(ApplyFtrlV2)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2)
-
- /**
- *@brief Update "var" according to the Ftrl-proximal scheme . \n
-
- *@par Inputs:
- *Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var".
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var".
- *accum: A mutable Tensor. Has the same type as "accum".
- *linear: A mutable Tensor. Has the same type as "linear" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyFtrlV2.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyFtrlV2 instead.
- */
- REG_OP(ApplyFtrlV2D)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(linear, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(l1, TensorType::NumberType())
- .INPUT(l2, TensorType::NumberType())
- .INPUT(l2_shrinkage, TensorType::NumberType())
- .INPUT(lr_power, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(linear, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyFtrlV2D)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- * var: A mutable Tensor. Has the same type as intput "var" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- */
- REG_OP(ApplyAdam)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdam)
-
- /**
- *@brief Updates "var" according to the Adam algorithm.
- * lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
- * m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g
- * v_t <- max(beta2 * v{t-1}, abs(g))
- * variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
- *
- *@attention Constraints:
- * *The input tensors must have the same shape.*
- *
- *@par Inputs:
- *@li var: A mutable Tensor of the type TensorType::NumberType().
- * Should be from a Variable().
- *@li m: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li v: A mutable Tensor of the same type as "var".
- * Should be from a Variable().
- *@li beta1_power: A scalar of the same type as "var".
- *@li beta2_power: A scalar of the same type as "var".
- *@li lr: learning_rate. A scalar of the same type as "var".
- *@li beta1: A scalar of the same type as "var".
- *@li beta2: A scalar of the same type as "var".
- *@li epsilon: A scalar of the same type as "var".
- *@li grad: A Tensor of the same type as "var", for the gradient.
- *
- *@par Attributes:
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less
- * contention.
- *@li use_nesterov: An optional bool. Defaults to "False".
- If "True", uses the nesterov update.
- *
- *@par Outputs:
- *@li var: A mutable tensor. Has the same type as input "var".
- *@li m: A mutable tensor. Has the same type as input "m".
- *@li v: A mutable tensor. Has the same type as input "v" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator ApplyAdam.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdam instead.
- */
- REG_OP(ApplyAdamD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(m, TensorType::NumberType())
- .INPUT(v, TensorType::NumberType())
- .INPUT(beta1_power, TensorType::NumberType())
- .INPUT(beta2_power, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(beta1, TensorType::NumberType())
- .INPUT(beta2, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(m, TensorType::NumberType())
- .OUTPUT(v, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdamD)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *var: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
- */
- REG_OP(ApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadelta)
-
- /**
- *@brief Updates "var" according to the proximal adadelta scheme . \n
-
- *@par Inputs:
- *Seven inputs, including:
- * @li var: A mutable Tensor of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li accum_update: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar of the same type as "var", for the scaling factor.
- * @li rho: A scalar of the same type as "var", for the decay factor.
- * @li epsilon: A scalar of the same type as "var", for the constant factor.
- * @li grad: A Tensor of the same type as "var", for the gradient . \n
-
- *@par Attributes:
- *use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", "accum" and "accum_update" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- *@par Outputs:
- *@li var: A mutable Tensor. Has the same type as "var".
- *@li accum: A mutable Tensor. Has the same type as "var".
- *@li accum_update: A mutable Tensor. Has the same type as "var" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ApplyAdadelta.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ApplyAdadelta instead.
- */
- REG_OP(ApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ApplyAdadeltaD)
-
- /**
- * @brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else:
- * var -= accum * lr
- *
- * @par Inputs:
- * Six inputs, including:
- * @li var: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor has the same type as "var".
- * Should be a Variable Tensor.
- * @li lr: A scalar has the same type as "var", for the scaling factor.
- * @li x1: A Tensor has type TensorType::NumberType().
- * @li momentum: A scalar has the same type as "var".
- * @li x2: A scalar has the same type as "var".
- *
- * @par Attributes:
- * Two attributes, including:
- * @li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be var - lr * momentum * accum,
- * so in the end, the var you get is actually var - lr * momentum * accum.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * Two outputs, including:
- * @li var: A mutable Tensor has the same type as "var".
- * @li accum: A mutable Tensor has the same type as "var".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentum)
-
- /**
- * @brief Updates "var" according to the ApplyMomentum algorithm.
- * accum = accum * momentum + x1 * x2
- * if use_nesterov is True:
- * var -= x1 * x2 * lr + accum * momentum * lr
- * else:
- * var -= accum * lr
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable Tensor of type float32.
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor has type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li lr: A scalar has the same type as "accum", for the scaling factor.
- * @li x1: A Tensor has the same type as "accum".
- * @li momentum: A scalar has the same type as "accum".
- * @li x2: A scalar has the same type as "accum".
- * @li var_copy: A Tensor has type float16.
- *
- * @par Attributes:
- * Two Attributes, including:
- * @li use_nesterov: An optional bool. Defaults to "False".
- * If True, the tensor passed to compute grad will be var - lr * momentum * accum,
- * so in the end, the var you get is actually var - lr * momentum * accum.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var", m", and "v" tensors will be protected
- * by a lock; otherwise the behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * Three outputs, including:
- * @li var: A Tensor has the type float32.
- * @li var_copy: A Tensor has the type float16.
- * @li accum: A Tensor has the same type as input "accum".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(FusedMulApplyMomentumExtern)
- .INPUT(var, TensorType(DT_FLOAT))
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .INPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(var, TensorType(DT_FLOAT))
- .OUTPUT(var_copy, TensorType(DT_FLOAT16))
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_nesterov, Bool, false)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyMomentumExtern)
-
- /**
- *@brief Updates '*var' according to the momentum scheme.
- * accum = accum * momentum - x1 * x2 * lr
- * if use_nesterov is True:
- * var += accum * momentum - x1 * x2 * lr
- * else:
- * var += accum
- *
- *@par Inputs:
- *@li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- *@li accum: A mutable tensor. Has the same type as "var". Should be from a
- * Variable().
- *@li lr: A tensor for the learning rate. Has the same type as "var". Should be
- * from a Variable().
- *@li x1: A Tensor has type TensorType::NumberType().
- *@li momentum: A scalar. Has the same type as "var".
- *@li x2: A scalar has the same type as "var".
- *
- *@par Attributes:
- *@li use_nesterov: An optional bool. Defaults to "False".
- * If "True", var will be updated by using Nesterov momentum.
- *@li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" tensor is protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- *
- *@par Outputs:
- * @li var: A mutable tensor. Has the same type as input "var".
- * @li accum: A mutable tensor. Has the same type as input "accum".
- *
- *@attention Constraints:
- * @li var: A mutable tensor. Has the same type as input "var".
- * @li accum: A mutable tensor. Has the same type as input "accum".
- *
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
- *
- */
- REG_OP(FusedMulApplyKerasMomentum)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(x1, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(x2, TensorType::NumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .ATTR(use_nesterov, Bool, false)
- .OP_END_FACTORY_REG(FusedMulApplyKerasMomentum)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2)
-
- /**
- *@brief Update "g" according to the LARS algorithm . \n
-
- *@par Inputs:
- *Six inputs, including:
- * @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
- * @li g: A Tensor of the same type and shape as "w".
- * @li w_square_sum: A Tensor of square_sum(w), has the same type as "w", Must be a scalar.
- * @li g_square_sum: A Tensor of square(g), has the same type as "w", Must be a scalar.
- * @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
- * @li learning_rate: A Tensor of the same type as "w", Must be a scalar . \n
-
- *@par Attributes:
- *Three Attributes, including:
- * @li hyperpara: An optional float. Default value is 0.001.
- * @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
- * @li use_clip: An optional bool. Defaults to "False".
- * If "True", updating learning rate . \n
-
- *@par Outputs:
- *g_new: Tensor of the same type as "w".
- */
- REG_OP(LarsV2Update)
- .INPUT(w, TensorType(DT_FLOAT))
- .INPUT(g, TensorType(DT_FLOAT))
- .INPUT(w_square_sum, TensorType(DT_FLOAT))
- .INPUT(g_square_sum, TensorType(DT_FLOAT))
- .INPUT(weight_decay, TensorType(DT_FLOAT))
- .INPUT(learning_rate, TensorType(DT_FLOAT))
- .OUTPUT(g_new, TensorType(DT_FLOAT))
- .ATTR(hyperpara, Float, 0.001)
- .ATTR(epsilon, Float, 0.00001)
- .ATTR(use_clip, Bool, false)
- .OP_END_FACTORY_REG(LarsV2Update)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable.
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- */
- REG_OP(SparseApplyFtrl)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrl)
-
- /**
- * @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor. The value of accum must be greater than 0.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of var and accum.
- * The value of indices must be unique. Otherwise, the result is unpredictable . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrl.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrl instead.
- */
- REG_OP(SparseApplyFtrlD)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlD)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Ten inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum".
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar . \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2.
- */
- REG_OP(SparseApplyFtrlV2)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(lr, TensorType({DT_FLOAT}))
- .INPUT(l1, TensorType({DT_FLOAT}))
- .INPUT(l2, TensorType({DT_FLOAT}))
- .INPUT(l2_shrinkage, TensorType({DT_FLOAT}))
- .INPUT(lr_power, TensorType({DT_FLOAT}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2)
-
- /**
- * @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
- * That is for rows we have grad for, "var", "accum" and "linear" are updated . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable Tensor. Must be of type TensorType::NumberType().
- * Should be a Variable Tensor.
- * @li accum: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li linear: A mutable Tensor of the same type as "var".
- * Should be a Variable Tensor.
- * @li grad: A Tensor of the same type as "var", for the gradient.
- * @li indices: A vector of indices into the first dimension of "var" and "accum" . \n
-
- * @par Attributes:
- * @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
- * @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
- * @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
- * @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
- * @li use_locking: An optional bool. Defaults to "False".
- * If "True", updating of the "var" and "accum" tensors will be
- * protected by a lock; otherwise the behavior is undefined,
- * but may exhibit less contention . \n
-
- * @par Outputs:
- * @li var: A Tensor. Has the same type and format as input "var".
- * @li accum: A Tensor. Has the same type and format as input "accum".
- * @li linear: A Tensor. Has the same type and format as input "linear" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyFtrlV2D.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyFtrlV2 instead.
- */
- REG_OP(SparseApplyFtrlV2D)
- .INPUT(var, TensorType({DT_FLOAT}))
- .INPUT(accum, TensorType({DT_FLOAT}))
- .INPUT(linear, TensorType({DT_FLOAT}))
- .INPUT(grad, TensorType({DT_FLOAT}))
- .INPUT(indices, TensorType({DT_INT32}))
- .OUTPUT(var, TensorType({DT_FLOAT}))
- .OUTPUT(accum, TensorType({DT_FLOAT}))
- .OUTPUT(linear, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(lr, Float)
- .REQUIRED_ATTR(l1, Float)
- .REQUIRED_ATTR(l2, Float)
- .REQUIRED_ATTR(l2_shrinkage, Float)
- .REQUIRED_ATTR(lr_power, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyFtrlV2D)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Nine inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li momentum: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "mom" and "ms".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms", and "mom" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyRMSProp.
- */
- REG_OP(SparseApplyRMSProp)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(momentum, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSProp)
-
- /**
- * @brief Updates "var" in specified index according to the RMSProp algorithm.
- * a const input will be considered as an attribute.
- * mean_square = decay * mean_square + (1-decay) * gradient ** 2
- * Delta = learning_rate * gradient / sqrt(mean_square + epsilon)
- * ms <- rho * ms_{t-1} + (1-rho) * grad * grad
- * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
- * var <- var - mom
- *
- * @par Inputs:
- * Six inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li ms: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li mom: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "ms", and "mom" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li rho: A required scalar. Must have the same type as "var".
- * @li momentum: A required scalar. Must have the same type as "var".
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li ms: A mutable tensor. Must have the same type as input "ms".
- * @li mom: A mutable tensor. Must have the same type as input "mom".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "ms" and "mom" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "ms" and "mom" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyRMSProp instead.
- */
- REG_OP(SparseApplyRMSPropD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(ms, TensorType::NumberType())
- .INPUT(mom, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(ms, TensorType::NumberType())
- .OUTPUT(mom, TensorType::NumberType())
- .REQUIRED_ATTR(rho, Float)
- .REQUIRED_ATTR(momentum, Float)
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyRMSPropD)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Eight inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li epsilon: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * use_locking: An optional "bool". Defaults to "False". If "True", updating of
- * the "var", "accum", and "accum_update" tensors will be protected by a lock; otherwise the
- * behavior is undefined, but may exhibit less contention.
- *
- * @par Outputs:
- * var: A mutable tensor. Has the same type as input "var".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum", and "accum_update" must have the same shape.
- *
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator SparseApplyAdadelta.
- */
- REG_OP(SparseApplyAdadelta)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(epsilon, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadelta)
-
- /**
- * @brief Updates "var" in specified index according to the Adadelta algorithm.
- * a const input will be considered as an attribute.
- * accum <- rho * accum + (1 - rho) * grad.square()
- * update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad
- * var <- var - update * lr
- * accum_update <- rho() * accum_update + (1 - rho()) * update.square()
- *
- * @par Inputs:
- * Seven inputs, including:
- * @li var: A mutable tensor. Must be one of the data types defined in
- * TensorType::NumberType(). Should be from a Variable().
- * @li accum: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
- * Variable().
- * @li lr: A scalar. Must have the same type as "var".
- * @li rho: A scalar. Must have the same type as "var".
- * @li grad: A tensor, specifying the gradient.
- * @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
- *
- * @par Attributes:
- * @li use_locking: An optional "bool". Defaults to "False". If "True",
- * updating of the "var", "accum", and "accum_update" tensors will be protected by a lock;
- * otherwise the behavior is undefined, but may exhibit less contention.
- * @li epsilon: A required scalar. Must have the same type as "var".
- *
- * @par Outputs:
- * @li var: A mutable tensor. Must have the same type as input "var".
- * @li accum: A mutable tensor. Must have the same type as input "accum".
- * @li accum_update: A mutable tensor. Must have the same type as input "accum_update".
- *
- * @attention Constraints:
- * @li Note that in this sparse implementation, "accum" and "accum_update" will not update
- * in iterations during which "grad" is 0.
- * @li The input tensors "var", "accum" and "accum_update" must have the same shape.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use SparseApplyAdadelta instead.
- */
- REG_OP(SparseApplyAdadeltaD)
- .INPUT(var, TensorType::NumberType())
- .INPUT(accum, TensorType::NumberType())
- .INPUT(accum_update, TensorType::NumberType())
- .INPUT(lr, TensorType::NumberType())
- .INPUT(rho, TensorType::NumberType())
- .INPUT(grad, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(var, TensorType::NumberType())
- .OUTPUT(accum, TensorType::NumberType())
- .OUTPUT(accum_update, TensorType::NumberType())
- .REQUIRED_ATTR(epsilon, Float)
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(SparseApplyAdadeltaD)
-
-
- /**
- *@brief Clean memory of workspace list . \n
-
- *@par Attributes:
- * @li automic_add_mem_size: sizes of workspaces . \n
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(AtomicAddrClean)
- .ATTR(automic_add_mem_size, ListInt, {})
- .OP_END_FACTORY_REG(AtomicAddrClean)
-
- /**
- *@brief Clean memory of workspace list . \n
-
- *@par Attributes:
- * @li workspace_size: sizes of workspaces . \n
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(DynamicAtomicAddrClean)
- .ATTR(automic_add_mem_size, ListInt, {})
- .OP_END_FACTORY_REG(DynamicAtomicAddrClean)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_TRAINING_OPS_H_
|