You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dimension_adjust_pass.cc 5.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/passes/dimension_adjust_pass.h"
  17. #include <memory>
  18. #include <string>
  19. #include <vector>
  20. #include "graph/utils/node_utils.h"
  21. namespace ge {
  22. namespace {
  23. const int kDataInputIndex = 0;
  24. const int kRemoveInputIndex = 1;
  25. } // namespace
  26. Status DimensionAdjustPass::Run(ge::NodePtr &node) {
  27. if (node == nullptr) {
  28. GELOGE(PARAM_INVALID, "node is nullptr");
  29. return PARAM_INVALID;
  30. }
  31. OpDescPtr op_desc_ptr = node->GetOpDesc();
  32. if (op_desc_ptr == nullptr) {
  33. GELOGE(PARAM_INVALID, "GetOpDesc return nullptr");
  34. return PARAM_INVALID;
  35. }
  36. string type;
  37. Status ret = GetOriginalType(node, type);
  38. if (ret != SUCCESS) {
  39. GELOGE(ret, "DimensionAdjustPass get originnal type fail.");
  40. return ret;
  41. }
  42. KernelFactory &factory = KernelFactory::Instance();
  43. shared_ptr<Kernel> op_kernel = factory.Create(type);
  44. if (op_kernel == nullptr) {
  45. return SUCCESS;
  46. }
  47. bool is_unknown = false;
  48. auto ret_status = NodeUtils::GetNodeUnknownShapeStatus(*node, is_unknown);
  49. if (ret_status != GRAPH_SUCCESS) {
  50. GELOGW("Get node unknown status failed, node name:%s, type:%s.", node->GetName().c_str(), node->GetType().c_str());
  51. return INTERNAL_ERROR;
  52. }
  53. if (is_unknown) {
  54. GELOGI("Current node %s, type %s is unknown shape which should be skip.",
  55. node->GetName().c_str(), node->GetType().c_str());
  56. return SUCCESS;
  57. }
  58. // call compute function
  59. ret = op_kernel->Compute(node);
  60. if (ret != SUCCESS) {
  61. if (ret == NOT_CHANGED) {
  62. return SUCCESS;
  63. }
  64. GELOGE(ret, "DimensionAdjustPass compute failed");
  65. return ret;
  66. }
  67. if (node->GetAllInDataAnchors().size() > static_cast<size_t>(kRemoveInputIndex)) {
  68. ret = PassUtils::UnlinkNodeWithControlCopy(node, kRemoveInputIndex);
  69. if (ret != SUCCESS) {
  70. GELOGE(ret, "DimensionAdjustPass unlink node with control copy fail.");
  71. return ret;
  72. }
  73. }
  74. ret = DealWithInNodes(node);
  75. if (ret != SUCCESS) {
  76. GELOGE(ret, "DealWithInNodes of %s failed.", node->GetName().c_str());
  77. return ret;
  78. }
  79. std::vector<int> data_relink_io_map = {kDataInputIndex};
  80. return IsolateAndDeleteNode(node, data_relink_io_map);
  81. }
  82. Status DimensionAdjustPass::DealWithInNodes(NodePtr &node) {
  83. GE_CHECK_NOTNULL(node);
  84. GE_CHECK_NOTNULL(node->GetOpDesc());
  85. auto graph = node->GetOwnerComputeGraph();
  86. auto in_data_anchors = node->GetAllInDataAnchors();
  87. for (auto &in_data_anchor : in_data_anchors) {
  88. if (in_data_anchor == nullptr) {
  89. continue;
  90. }
  91. auto in_node_anchor = in_data_anchor->GetPeerOutAnchor();
  92. if (in_node_anchor == nullptr) {
  93. continue;
  94. }
  95. auto in_node = in_node_anchor->GetOwnerNode();
  96. if (in_node->GetType() == SWITCHN) {
  97. auto identity_name = node->GetName() + "_ctrl_identity_" + std::to_string(in_data_anchor->GetIdx());
  98. auto identity =
  99. AddIdentityNodeToGraph(identity_name, node->GetOpDesc()->GetInputDesc(in_data_anchor->GetIdx()), graph);
  100. GE_CHECK_NOTNULL(identity);
  101. GELOGI("Create new identity node[%s] after node %s[type: %s] success.", identity->GetName().c_str(),
  102. in_node->GetName().c_str(), in_node->GetType().c_str());
  103. GE_CHK_STATUS_RET(GraphUtils::AddEdge(in_node_anchor, identity->GetInDataAnchor(0)))
  104. GE_CHECK_NOTNULL(identity->GetOutControlAnchor());
  105. if (identity->GetOutControlAnchor()->IsLinkedWith(node->GetInControlAnchor())) {
  106. continue;
  107. }
  108. GE_CHK_STATUS_RET(GraphUtils::AddEdge(identity->GetOutControlAnchor(), node->GetInControlAnchor()))
  109. }
  110. }
  111. return SUCCESS;
  112. }
  113. NodePtr DimensionAdjustPass::AddIdentityNodeToGraph(const string &name, const GeTensorDesc &tensor,
  114. ComputeGraphPtr &graph) {
  115. if (graph == nullptr) {
  116. GELOGE(INTERNAL_ERROR, "Comput graph ptr is null in creating identity node.");
  117. return nullptr;
  118. }
  119. OpDescPtr desc = MakeShared<OpDesc>("", "");
  120. if (desc == nullptr) {
  121. GELOGE(MEMALLOC_FAILED, "Failed to create op desc.");
  122. return nullptr;
  123. }
  124. desc->SetName(name);
  125. desc->SetType(IDENTITY);
  126. auto ret = desc->AddInputDesc(tensor);
  127. auto ret2 = desc->AddOutputDesc(tensor);
  128. if ((ret != GRAPH_SUCCESS) || (ret2 != GRAPH_SUCCESS)) {
  129. GELOGE(INTERNAL_ERROR, "Failed to add input/output desc in creating identity.");
  130. return nullptr;
  131. }
  132. return graph->AddNodeFront(desc);
  133. }
  134. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示