You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_pipeline_executor.cc 12 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. #include "hybrid_model_pipeline_executor.h"
  2. #include "common/math/math_util.h"
  3. #include "common/dump/dump_manager.h"
  4. #include "graph/ge_context.h"
  5. #include "graph/runtime_inference_context.h"
  6. #include "graph/load/model_manager/model_manager.h"
  7. namespace ge {
  8. namespace hybrid {
  9. namespace {
  10. constexpr int kNumExecutors = 2;
  11. const int kMinLoopCount = 2;
  12. const int kIntBase = 10;
  13. const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
  14. }
  15. StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
  16. : id_(id), model_(model), pipe_config_(config) {}
  17. StageExecutor::~StageExecutor() { GELOGD("~StageExecutor(), id = %d", id_); }
  18. Status StageExecutor::Init() {
  19. GELOGD("[Executor: %d] Start to init StateExecutor", id_);
  20. context_.rt_context = pipe_config_->rt_context;
  21. GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
  22. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  23. context_.stream = stream_;
  24. root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
  25. GE_CHECK_NOTNULL(root_graph_executor_);
  26. GELOGD("[Executor: %d] Init stage executor successfully", id_);
  27. return SUCCESS;
  28. }
  29. Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
  30. GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
  31. string ctx_id = std::to_string(context.context_id);
  32. RuntimeInferenceContext::DestroyContext(ctx_id);
  33. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
  34. RuntimeInferenceContext *ctx = nullptr;
  35. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context");
  36. for (auto &host_tensor : context.model->GetHostTensors()) {
  37. auto node_id = host_tensor.first;
  38. for (const auto &output_idx_and_tensor : host_tensor.second) {
  39. auto output_idx = output_idx_and_tensor.first;
  40. GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx);
  41. ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone());
  42. }
  43. }
  44. return SUCCESS;
  45. }
  46. Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
  47. int iteration_count) {
  48. GELOGD("Start");
  49. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  50. int num_loops = iteration_count / pipe_config_->num_executors;
  51. if (id_ < iteration_count % iteration_count) {
  52. num_loops += 1;
  53. }
  54. FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
  55. num_loops *= pipe_config_->num_stages;
  56. GELOGD("[Executor: %d] loop count = %d", id_, num_loops);
  57. for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
  58. GELOGD("[Executor: %d] Start to wait for task.", id_);
  59. StageTask task_info;
  60. task_queue_.Pop(task_info);
  61. GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
  62. if (task_info.iteration >= pipe_config_->iteration_end) {
  63. GELOGE(INTERNAL_ERROR, "[Check][Range][Executor: %d] Unexpected iteration: %ld.", id_, task_info.iteration);
  64. REPORT_INNER_ERROR("E19999", "[Executor: %d] Unexpected iteration: %ld.", id_, task_info.iteration);
  65. return INTERNAL_ERROR;
  66. }
  67. if (task_info.event != nullptr) {
  68. GELOGD("[%d] Add StreamWaitEvent", id_);
  69. GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
  70. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] End", task_info.iteration - 1,
  71. task_info.stage);
  72. }
  73. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %lld] [Stage = %d] Start", task_info.iteration,
  74. task_info.stage);
  75. if (task_info.stage == 0) {
  76. GELOGD("[Executor: %d] To ResetExecutionContext", id_);
  77. GE_CHK_STATUS_RET(ResetExecutionContext(context_),
  78. "[Invoke][ResetExecutionContext][Executor: %d] Failed to reset context", id_);
  79. context_.iteration = task_info.iteration;
  80. GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
  81. }
  82. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
  83. GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
  84. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
  85. GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);
  86. // notify next execution unit
  87. StageTask next_task;
  88. next_task.stage = task_info.stage;
  89. next_task.iteration = task_info.iteration + 1;
  90. auto sync_result = Synchronize();
  91. if (sync_result != SUCCESS) {
  92. GELOGE(sync_result,
  93. "[Invoke][Synchronize][Executor: %d] Failed to sync result:%d. iteration = %ld",
  94. id_, sync_result, task_info.iteration);
  95. REPORT_CALL_ERROR("E19999", "[Executor: %d] Failed to sync result:%d. iteration = %ld",
  96. id_, sync_result, task_info.iteration);
  97. context_.profiler->Dump(std::cout);
  98. context_.callback_manager->Destroy();
  99. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  100. return sync_result;
  101. }
  102. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] End", task_info.iteration, task_info.stage);
  103. // if not end stage
  104. if (task_info.stage >= pipe_config_->num_stages - 1) {
  105. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] Schedule End", task_info.iteration);
  106. GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
  107. context_.callback_manager->Destroy();
  108. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  109. }
  110. next_executor_->ExecuteAsync(next_task);
  111. GELOGD("[Executor: %d] Push item successfully.", id_);
  112. }
  113. GELOGD("[Executor: %d] Process task ended.", id_);
  114. return SUCCESS;
  115. }
  116. Status StageExecutor::ExecuteAsync(const StageTask &args) {
  117. (void)task_queue_.Push(args);
  118. return SUCCESS;
  119. }
  120. Status StageExecutor::Synchronize() {
  121. auto ret = root_graph_executor_->Synchronize();
  122. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
  123. return ret;
  124. }
  125. HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
  126. : model_(model), device_id_(device_id) {
  127. config_.num_executors = kNumExecutors;
  128. config_.num_stages = model_->GetRootGraphItem()->NumGroups();
  129. config_.device_id = device_id_;
  130. }
  131. Status StageExecutor::InitExecutionContext() {
  132. GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
  133. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  134. context_.model = model_;
  135. context_.session_id = ::ge::GetContext().SessionId();
  136. GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
  137. context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
  138. GE_CHECK_NOTNULL(context_.allocator);
  139. context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
  140. GE_CHECK_NOTNULL(context_.callback_manager);
  141. context_.dump_properties = DumpManager::GetInstance().GetDumpProperties(context_.session_id);
  142. if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
  143. context_.trace_enabled = true;
  144. }
  145. return SUCCESS;
  146. }
  147. Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
  148. root_graph_executor_->InitForPartialExecution(inputs, input_desc);
  149. return SUCCESS;
  150. }
  151. Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
  152. return root_graph_executor_->GetOutputs(outputs, output_desc);
  153. }
  154. void StageExecutor::Reset() {
  155. task_queue_.Stop();
  156. task_queue_.Clear();
  157. task_queue_.Restart();
  158. }
  159. Status HybridModelPipelineExecutor::Init() {
  160. const char *profiling_level = std::getenv(kEnvProfilingLevel);
  161. if (profiling_level != nullptr) {
  162. GraphExecutionContext::profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
  163. GELOGD("Got profiling level = %ld", GraphExecutionContext::profiling_level);
  164. if (GraphExecutionContext::profiling_level > 0) {
  165. context_.profiler.reset(new (std::nothrow) HybridProfiler());
  166. GE_CHECK_NOTNULL(context_.profiler);
  167. }
  168. }
  169. GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
  170. GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
  171. GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
  172. return SUCCESS;
  173. }
  174. Status HybridModelPipelineExecutor::InitStageExecutors() {
  175. for (int i = 0; i < config_.num_executors; ++i) {
  176. auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
  177. GE_CHECK_NOTNULL(stage_executor);
  178. GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());
  179. if (context_.profiler != nullptr) {
  180. // will call unique_ptr::release later
  181. stage_executor->context_.profiler.reset(context_.profiler.get());
  182. }
  183. stage_executors_.emplace_back(std::move(stage_executor));
  184. }
  185. // build propagation loop
  186. for (int i = 0; i < config_.num_executors - 1; ++i) {
  187. stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
  188. }
  189. stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
  190. return SUCCESS;
  191. }
  192. Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
  193. int loop_count = args.num_loops;
  194. GE_CHECK_GE(loop_count, kMinLoopCount);
  195. auto &inputs = args.inputs;
  196. auto &input_desc = args.input_desc;
  197. // Start schedulers
  198. std::vector<std::future<Status>> futures;
  199. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  200. GELOGD("Starting executor %zu", i);
  201. auto executor = stage_executors_[i].get();
  202. executor->Reset();
  203. auto future = std::async(
  204. [loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });
  205. futures.emplace_back(std::move(future));
  206. }
  207. // Push initial tasks
  208. GELOGD("Start to execute with loops, loop count = %d", loop_count);
  209. config_.iteration_end = iteration_ + loop_count;
  210. for (int i = 0; i < config_.num_stages; ++i) {
  211. StageExecutor::StageTask task_info;
  212. task_info.stage = i;
  213. task_info.iteration = iteration_;
  214. stage_executors_[0]->ExecuteAsync(task_info);
  215. }
  216. // Wait for end of iterations
  217. bool has_error = false;
  218. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  219. GELOGD("Start to sync result of executor[%zu]", i);
  220. auto ret = futures[i].get();
  221. if (ret != SUCCESS) {
  222. GELOGE(ret, "[Check][Result][Executor: %zu] Failed to schedule tasks.", i);
  223. REPORT_INNER_ERROR("E19999", "[Executor: %zu] Failed to schedule tasks.", i);
  224. has_error = true;
  225. continue;
  226. }
  227. ret = stage_executors_[i]->Synchronize();
  228. if (ret != SUCCESS) {
  229. auto model_manager = ModelManager::GetInstance();
  230. GE_CHECK_NOTNULL(model_manager);
  231. auto exception_infos = model_manager->GetExceptionInfos();
  232. if (!exception_infos.empty()) {
  233. HYBRID_CHK_STATUS_RET(context_.DumpExceptionInfo(exception_infos),
  234. "[Execute][GraphInternal] Dump exception info failed.");
  235. }
  236. GELOGE(ret, "[Invoke][Synchronize] failed for [Executor: %zu].", i);
  237. REPORT_CALL_ERROR("E19999", "[Executor: %zu] failed to Synchronize result.", i);
  238. has_error = true;
  239. continue;
  240. }
  241. }
  242. // record for profiling analyzer
  243. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");
  244. if (context_.profiler != nullptr) {
  245. context_.profiler->Dump(std::cout);
  246. }
  247. iteration_ = config_.iteration_end;
  248. if (has_error) {
  249. GELOGE(FAILED, "[Check][Error]Error occurred while execution.");
  250. REPORT_INNER_ERROR("E19999", "Error occurred while execution.");
  251. return FAILED;
  252. }
  253. auto last_iter_executor_idx = loop_count % stage_executors_.size();
  254. GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
  255. "[Get][Outputs]Failed from executor[%zu]", last_iter_executor_idx);
  256. return SUCCESS;
  257. }
  258. HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
  259. GELOGD("~HybridModelPipelineExecutor()");
  260. for (auto &executor : stage_executors_) {
  261. (void)executor->context_.profiler.release();
  262. }
  263. }
  264. } // namespace hybrid
  265. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示