You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

profiling_definitions.h 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. /**
  2. * Copyright 2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef AIR_CXX_PROFILING_DEFINITIONS_H
  17. #define AIR_CXX_PROFILING_DEFINITIONS_H
  18. #include <string>
  19. #include <iostream>
  20. #include <mutex>
  21. #include <unordered_map>
  22. #include "graph/profiler.h"
  23. #include "external/ge/ge_api_types.h"
  24. #include "toolchain/prof_callback.h"
  25. namespace ge {
  26. namespace profiling {
  27. enum {
  28. kAclCompileAndExecute,
  29. kAclMatchOpModel,
  30. kAclMatchStaticOpModel,
  31. kAclMatchDynamicOpModel,
  32. kAclExecuteAsync,
  33. kAclLoadSingleOp,
  34. kAclBuildOpModel,
  35. kInferShape,
  36. kTiling,
  37. kUpdateShape,
  38. kConstPrepare,
  39. kInitHybridExecuteArgs,
  40. kInitInferShapeContext,
  41. kDestroyInferShapeContext,
  42. kResetSubgraphExecutor,
  43. kCommitInferShapeTask,
  44. kDeviceToHost,
  45. kPrepareTask,
  46. kLaunchTask,
  47. kCommitTilingTask,
  48. kAtomic,
  49. kKernelLaunchPrepare,
  50. kRtKernelLaunch,
  51. kOpExecute,
  52. kAllocMem,
  53. kCopyH2D,
  54. // Add new definitions here
  55. kProfilingIndexEnd
  56. };
  57. constexpr uint64_t kInvalidHashId = 0UL;
  58. class ProfilingContext {
  59. public:
  60. static bool IsDumpToStdEnabled();
  61. static ProfilingContext &GetInstance();
  62. ProfilingContext();
  63. ~ProfilingContext();
  64. /*
  65. * 还有一种思路是`IsEnabled`只判断profiler_是否为空指针,不再设置单独的enabled标记位,这样可以少一个标记位。
  66. * 但是这么做就意味着,profiler_实例在未使能profiling时,必须是空指针状态。
  67. * 为了性能考虑,profiling机制在编译和加载时,就会调用`RegisterString`,向profiler_注册字符串,后续执行时,只会使用注册好的index了。
  68. * 因此存在一种场景:编译时并未使能profiling(因为编译时间很长,使能profiling也无法真实反应执行时的耗时状态),
  69. * 因此编译时注册字符串的动作并没有生效。在执行时,动态的打开了profiling,这种场景下,执行时无法拿到注册后字符串
  70. */
  71. bool IsEnabled() const noexcept {
  72. return enabled_ && profiler_ != nullptr;
  73. }
  74. void SetEnable() noexcept {
  75. enabled_ = true;
  76. }
  77. void SetDisable() noexcept {
  78. enabled_ = false;
  79. }
  80. void RecordCurrentThread(const int64_t element, const int64_t event, const EventType et,
  81. const std::chrono::time_point<std::chrono::system_clock> time_point) {
  82. if (IsEnabled()) {
  83. profiler_->RecordCurrentThread(element, event, et, time_point);
  84. }
  85. }
  86. void RecordCurrentThread(const int64_t element, const int64_t event, const EventType et) {
  87. RecordCurrentThread(element, event, et, std::chrono::system_clock::now());
  88. }
  89. const Profiler *GetProfiler() const {
  90. return profiler_.get();
  91. }
  92. void Dump(std::ostream &out_stream) const {
  93. if (IsEnabled()) {
  94. profiler_->Dump(out_stream);
  95. } else {
  96. out_stream << "Profiling not enable, skip to dump" << std::endl;
  97. }
  98. }
  99. void DumpToStdOut() const {
  100. Dump(std::cout);
  101. }
  102. void Reset() {
  103. if (IsEnabled()) {
  104. profiler_->Reset();
  105. }
  106. }
  107. int64_t RegisterString(const std::string &str);
  108. int64_t RegisterStringHash(const uint64_t hash_id, const std::string &str);
  109. void UpdateElementHashId(const MsprofReporterCallback reporter_callback);
  110. static Status QueryHashId(const MsprofReporterCallback reporter_callback, const std::string &src_str,
  111. uint64_t &hash_id);
  112. size_t GetRegisterStringNum() const {
  113. return strings_to_index_.size();
  114. }
  115. void Init();
  116. private:
  117. void UpdateHashByStr(const std::string &str, const uint64_t hash);
  118. private:
  119. bool inited_;
  120. bool enabled_;
  121. int64_t str_index_;
  122. std::unordered_map<std::string, int64_t> strings_to_index_;
  123. std::mutex strings_to_index_mutex_;
  124. std::unique_ptr<Profiler> profiler_;
  125. };
  126. class ScopeProfiler {
  127. public:
  128. ScopeProfiler(const int64_t element, const int64_t event) : element_(element), event_(event) {
  129. if (ProfilingContext::GetInstance().IsEnabled()) {
  130. start_trace_ = std::chrono::system_clock::now();
  131. }
  132. }
  133. ~ScopeProfiler() {
  134. if (ProfilingContext::GetInstance().IsEnabled()) {
  135. ProfilingContext::GetInstance().RecordCurrentThread(element_, event_, EventType::kEventStart, start_trace_);
  136. ProfilingContext::GetInstance().RecordCurrentThread(element_, event_, EventType::kEventEnd);
  137. }
  138. }
  139. void SetElement(const int64_t element) {
  140. element_ = element;
  141. }
  142. private:
  143. std::chrono::time_point<std::chrono::system_clock> start_trace_;
  144. int64_t element_;
  145. int64_t event_;
  146. };
  147. } // namespace profiling
  148. } // namespace ge
  149. #define PROFILING_START(element, event) \
  150. ge::profiling::ProfilingContext::GetInstance().RecordCurrentThread((element), (event), \
  151. ge::profiling::EventType::kEventStart)
  152. #define PROFILING_END(element, event) \
  153. ge::profiling::ProfilingContext::GetInstance().RecordCurrentThread((element), (event), \
  154. ge::profiling::EventType::kEventEnd)
  155. #define PROFILING_SCOPE(element, event) ge::profiling::ScopeProfiler profiler((element), (event))
  156. #define PROFILING_SCOPE_ELEMENT(element) profiler.SetElement((element))
  157. #endif // AIR_CXX_PROFILING_DEFINITIONS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示