|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161 |
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file math_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_
-
- #include "graph/operator_reg.h"
- #include "graph/operator.h"
-
- namespace ge {
-
- /**
- *@brief Computes the output as (shift + scale * x) ^ power . \n
-
- *@par Inputs:
- * x: A Tensor of type float16 or float32 . \n
-
- *@par Attributes:
- *@li power: Optional. Must be one of the following types: float32. Defaults to 1.0.
- *@li scale: Optional. Must be one of the following types: float32. Defaults to 1.0.
- *@li shift: Optional. Must be one of the following types: float32. Defaults to 0.0 . \n
-
- *@par Outputs:
- * y: A Tensor. Has the same type and shape as "x".
- *@par Third-party framework compatibility
- * Compatible with the Caffe operator Power.
- */
-
- REG_OP(Power)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(power, Float, 1.0)
- .ATTR(scale, Float, 1.0)
- .ATTR(shift, Float, 0.0)
- .OP_END_FACTORY_REG(Power);
-
- /**
- *@brief Compute the lower regularized incomplete Gamma function P(a, x) . \n
-
- *@par Inputs:
- *The input a and x must have the same type. Inputs include:
- *@li a:A Tensor. Must be one of the following types: float, double.
- *@li x:A Tensor. Must have the same type as a . \n
-
- *@par Outputs:
- *z:A Tensor. Has the same type as a . \n
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Igamma operator.
- */
-
- REG_OP(Igamma)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Igamma)
-
- /**
- *@brief Compute the upper regularized incomplete Gamma function Q(a, x) . \n
-
- *@par Inputs:
- *The input a and x must have the same type. Inputs include:
- *@li a:A Tensor. Must be one of the following types: float, float64.
- *@li x:A Tensor. Must have the same type as a . \n
-
- *@par Outputs:
- *z:A Tensor. Has the same type as a . \n
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Igammac operator.
- */
-
- REG_OP(Igammac)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Igammac)
-
- /**
- *@brief Compare values of input to threshold and pack resulting bits into
- a uint8 . \n
-
- *@par Inputs:
- *The input size must be a non-negative int32 scalar Tensor. Inputs include:
- *@li input:Values to compare against threshold and bitpack.
- *@li threshold:Threshold to compare against . \n
-
- *@par Outputs:
- *y:The bitpacked comparisons . \n
-
- *@attention Constraints:
- *Currently, the innermost dimension of the tensor must be divisible by 8. \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow CompareAndBitpack operator
- */
-
- REG_OP(CompareAndBitpack)
- .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, \
- DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
- .INPUT(threshold, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
- DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
- .OUTPUT(y, TensorType(DT_UINT8))
- .OP_END_FACTORY_REG(CompareAndBitpack)
-
- /**
- *@brief Counts the number of occurrences of each value in an integer array.
- Outputs a vector with length size and the same dtype as weights. If weights
- are empty, then index i stores the number of times the value i is counted in
- arr. If weights are non-empty, then index i stores the sum of the value in
- weights at each index . \n
-
- *@par Inputs:
- *The input size must be a non-negative int32 scalar Tensor. Inputs include:
- *@li array:int32 Tensor.
- *@li size:non-negative int32 scalar Tensor.
- *@li weights: is an int32, int64, float32, or double Tensor with the same
- shape as arr, or a length-0 Tensor, in which case it acts as all weights
- equal to 1 . \n
-
- *@par Outputs:
- *bins:1D Tensor with length equal to size. The counts or summed weights for
- each value in the range [0, size) . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow Bincount operator
- */
-
- REG_OP(Bincount)
- .INPUT(array, TensorType(DT_INT32))
- .INPUT(size, TensorType(DT_INT32))
- .INPUT(weights, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
- .OUTPUT(bins, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
- .OP_END_FACTORY_REG(Bincount)
-
- /**
- *@brief Compute the regularized incomplete beta integral . \n
-
- *@par Inputs:
- *The input b and x must have the same types as a. Inputs include:
- *@li a:A Tensor. Must be one of the following types: float32, double.
- *@li b:A Tensor. Must have the same type as a.
- *@li x:A Tensor. Must have the same type as a . \n
-
- *@par Outputs:
- *z:A Tensor. Has the same type as a . \n
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Betainc operator.
- */
-
- REG_OP(Betainc)
- .INPUT(a, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(b, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OP_END_FACTORY_REG(Betainc)
-
- /**
- *@brief Compute the Hurwitz zeta function
-
- *@par Inputs:
- *The input q must be the same type as x. Inputs include:
- *@li x:A Tensor. Must be one of the following types: float32, double.
- *@li q:A Tensor. Must have the same type as x . \n
-
- *@par Outputs:
- *z:A Tensor. Has the same type as x . \n
-
- *@attention Constraints:
- *The implementation for Zeta on Ascend uses ai cpu, with bad performance.
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Zeta operator.
- */
-
- REG_OP(Zeta)
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
- .INPUT(q, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
- .OP_END_FACTORY_REG(Zeta)
-
- /**
- *@brief Bucketize 'input' based on 'boundaries'. For example, if the inputs
- are boundaries = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]] then
- the output will be output = [[0, 3] [3, 2] [1, 3]]
-
- *@par Inputs:
- *The dtype of input x int float double. Inputs include:
- *x:Any shape of Tensor contains with int or float type . \n
-
- *@par Attributes:
- *boundaries:A sorted list of floats gives the boundary of the buckets . \n
-
- *@par Outputs:
- *y:Same shape with 'input', each value of input replaced with bucket index . \n
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Bucketize operator.
- */
-
- REG_OP(Bucketize)
- .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(boundaries, ListFloat)
- .OP_END_FACTORY_REG(Bucketize)
-
- /**
- *@brief Returns a new tensor with the truncated integer values of the elements of input. \n
-
- *@par Inputs:
- *One inputs, including:
- *input_x: A tensor. Must be one of the following types: float16, float32, int8, uint8, int32. \n
-
- *@par Outputs:
- *output_y: A tensor with the same type and shape of input_x \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator Trunc. \n
- */
- REG_OP(Trunc)
- .INPUT(input_x, TensorType({DT_FLOAT16,DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8}))
- .OUTPUT(output_y, TensorType({DT_FLOAT16,DT_FLOAT, DT_INT8, DT_INT32, DT_UINT8}))
- .OP_END_FACTORY_REG(Trunc)
-
- /**
- *@brief Computes the sum along sparse segments of a tensor . \n
-
- *@par Inputs:
- *The input indices and segment_ids must have same rank. Inputs include:
- *@li x:A Tensor. Must be one of the following types: float, double, int32,
- uint8, int16, int8, int64, uint16, uint32, uint64.
- *@li indices: A Tensor. Must be one of the following types: int32, int64.
- A 1-D tensor. Has same rank as segment_ids.
- *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be
- sorted and can be repeated . \n
-
- *@par Outputs:
- *y:A Tensor. Has the same type as x . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow SparseSegmentSum operator
- */
-
- REG_OP(SparseSegmentSum)
- .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
- DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .OP_END_FACTORY_REG(SparseSegmentSum)
-
- /**
- *@brief Computes the mean along sparse segments of a tensor . \n
-
- *@par Inputs:
- *The input indices and segment_ids must have same rank. Inputs include:
- *@li x: A Tensor. Must be one of the following types: float, double.
- *@li indices: A Tensor. Must be one of the following types: int32, int64.
- A 1-D tensor. Has same rank as segment_ids.
- *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be
- sorted and can be repeated . \n
-
- *@par Outputs:
- *y:A Tensor. Has the same type as x . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow SparseSegmentMean operator
- */
-
- REG_OP(SparseSegmentMean)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(SparseSegmentMean)
-
- /**
- *@brief Computes gradients for SparseSegmentMean . \n
-
- *@par Inputs:
- *The input grad must have be type float or double. Inputs include:
- *@li x: A Tensor. Must be one of the following types: float, double.
- gradient propagated to the SparseSegmentMean op.
- *@li indices: A Tensor. Must be one of the following types: int32, int64.
- indices passed to the corresponding SparseSegmentMean op.
- *@li segment_ids: A Tensor of type int32. segment_ids passed to the
- corresponding SparseSegmentMean op.
- *@li output_dim0: A Tensor of type int32. dimension 0 of "x" passed to
- SparseSegmentMean op . \n
-
- *@par Outputs:
- *y:A Tensor. Has the same type as grad . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow SparseSegmentMeanGrad operator
- */
-
- REG_OP(SparseSegmentMeanGrad)
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .INPUT(output_dim0, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(SparseSegmentMeanGrad)
-
- /**
- *@brief Computes the gradient of igamma(a, x) wrt a
-
- *@par Inputs:
- *The input a and x must have the same type. Inputs include:
- *@li a:A Tensor. Must be one of the following types: float32, double.
- *@li x:A Tensor. Must have the same type as a . \n
-
- *@par Outputs:
- *y:A Tensor. Has the same type as a . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow IgammaGradA operator
- */
-
- REG_OP(IgammaGradA)
- .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(IgammaGradA)
-
- /**
- *@brief Initialize data process channel . \n
-
- *@par Attributes:
- *channel_name: A string. Default "" . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow InitData operator
- */
-
- REG_OP(InitData)
- .ATTR(channel_name, String, "")
- .OP_END_FACTORY_REG(InitData)
-
- /**
- *@brief Get the next batch of data in data processing . \n
-
- *@par Attributes:
- *@li output_types: A nested structure of DType objects corresponding to each
- component of an element of this dataset.
- *@li output_shapes: A nested structure of TensorShape objects corresponding
- to each component of an element of this dataset.
- *@li output_num:output of nums.
- *@li channel_name: A string. Default "" . \n
-
- *@par Outputs:
- *y:A nested structure of Tensor objects . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow GetNext operator
- */
-
- REG_OP(GetNext)
- .DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64,
- DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL}))
- .ATTR(output_types, ListType, {})
- .ATTR(output_shapes, ListListInt, {})
- .ATTR(output_num, Int, 1)
- .ATTR(channel_name, String, "")
- .OP_END_FACTORY_REG(GetNext)
-
- /**
- *@brief Get dynamic dims after GetNext. \n
-
- *@par Inputs:
- *input: A nested structure of Tensor objects, from GetNext's output. \n
-
- *@par Attributes:
- *@li shape_info: GE shape_info for each inputs, -1 means unknow dim.
- *@li N: Inputs number. \n
-
- *@par Outputs:
- *dims: GE unknow dims, a vector of int64. \n
- */
-
- REG_OP(GetDynamicDims)
- .DYNAMIC_INPUT(input, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(dims, TensorType({DT_INT32, DT_INT64}))
- .REQUIRED_ATTR(shape_info, ListInt)
- .REQUIRED_ATTR(N, Int)
- .OP_END_FACTORY_REG(GetDynamicDims)
-
- /**
- *@brief End of sequence . \n
-
- *@par Inputs:
- *x: A Tensor of type uint8 . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
-
- REG_OP(EndOfSequence)
- .INPUT(x, TensorType({DT_UINT8}))
- .OUTPUT(y, TensorType({DT_UINT8}))
- .OP_END_FACTORY_REG(EndOfSequence)
-
- /**
- *@brief: Computes the Gauss error function of `x` element-wise . \n
-
- *@par Inputs:
- *x: A Tensor of type float16, float32 or double. the format can be
- * [NCHW,NC1HWC0,NHWC,ND]
-
- *@par Outputs:
- *y: A Tensor. Has the same type and format as "x" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Erf.
- */
- REG_OP(Erf)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erf)
-
- /**
- *@brief: Computes the Gauss complementary error function of "x" element-wise . \n
-
- *@par Inputs:
- *x: A Tensor of type float16 ,float32, double . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Erfc.
- */
- REG_OP(Erfc)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(Erfc)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values`
- * that fell into every bin.The bins are equal width and determined by the arguments
- * 'value_range' and 'nbins' . \n
-
- *@par Inputs:
- *Three inputs, including:
- *@li x: A Tensor of type float32, float16, int32, int64.
- *@li range: A Tensor of type float32,float16,int32, int64.
- *@li nbins: A Tensor of type int32 . \n
-
- *@par Attributes:
- * dtype: An optional attribute. Defaults to "int32" . \n
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32 or int64 . \n
-
- *@par Third-party framework compatibility
- * Compatible with TensorFlow operator HistogramFixedWidth.
- */
- REG_OP(HistogramFixedWidth)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
- .INPUT(nbins, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .ATTR(dtype, Int, 3)
- .OP_END_FACTORY_REG(HistogramFixedWidth)
-
- /**
- *@brief This operation returns a rank 1 histogram counting the number of entries in `values`
- * that fell into every bin.The bins are equal width and determined by the arguments
- * 'value_range' and 'nbins' . \n
-
- *@par Inputs:
- *Two inputs, including:
- *@li x: A Tensor of type float32,float16,int32, int64.
- *@li range: A Tensor of type float32,float16,int32, int64 . \n
-
- *@par Attributes:
- *@li dtype: An optional attribute. Defaults to "int32".
- *@li nbins: A required attribute,the type is int32 . \n
-
- *@par Outputs:
- *y: A Tensor. A Tensor of type int32 . \n
-
- *@par Third-party framework compatibility
- * Compatible with TensorFlow operator HistogramFixedWidth.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use HistogramFixedWidth instead.
- */
- REG_OP(HistogramFixedWidthD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
- .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(nbins, Int)
- .ATTR(dtype, Int, 3)
- .OP_END_FACTORY_REG(HistogramFixedWidthD)
-
- /**
- *@brief Returns the next representable value of x1 in the direction of x2, element-wise . \n
-
- *@par Inputs:
- *The input X1 and x2 must have the same type. Inputs include:
- *@li x1:A Tensor. Must be one of the following types: float32, double.
- *@li x2:A Tensor. Must have the same type as x1 . \n
-
- *@par Outputs:
- *output:A Tensor. Has the same type as x1 . \n
-
- *@par Third-party framework compatibility
- *Compatible with tensorflow NextAfter operator
- */
- REG_OP(NextAfter)
- .INPUT(x1, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OP_END_FACTORY_REG(NextAfter)
-
- /**
- *@brief Calculate the P-norm distance between vectors function. \n
-
- *@par Inputs:
- *One inputs, including:
- * input_x: A tensor. Must be one of the following types:
- * float16, float32. \n
-
- *@par Attributes:
- *p: An optional float.Defaults to 2. \n
-
- *@par Outputs:
- *y: A Tensor with the same type and shape of input_x's. \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator Pdist. \n
- */
- REG_OP(Pdist)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(p, Float, 2.0)
- .OP_END_FACTORY_REG(Pdist)
-
- /**
- *@brief Compute element-wise finiteness, return a boolean tensor.
-
- *@par Inputs:
- *x:A Tensor of type float16, float32, double.
-
- *@par Outputs:
- *y:A Tensor. Returns which elements of x are finite
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow IsFinite operator.
- */
- REG_OP(IsFinite)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .OP_END_FACTORY_REG(IsFinite)
-
- /**
- *@brief Compute element-wise infiniteness, return a boolean tensor.
-
- *@par Inputs:
- *x:A Tensor of type float16, float32, double.
-
- *@par Outputs:
- *y:A Tensor. Has the same shape as x. Returns which elements of x are isinf.
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow IsInf operator.
- */
- REG_OP(IsInf)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .OP_END_FACTORY_REG(IsInf)
-
- /**
- *@brief Computes the complex absolute value of a tensor.
-
- *@par Inputs:
- *x: x of complex numbers, this operation returns a tensor of type
- float or double that is the absolute value of each element in x .
-
- * @par Attributes:
- * Tout: representing the output of type.
-
- *@par Outputs:
- *y:A tensor of type `float` or `double` that is the absolute value of each element in `x`.
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow ComplexAbs operator.
- */
- REG_OP(ComplexAbs)
- .INPUT(x, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
- .ATTR(Tout, Type, DT_FLOAT)
- .OP_END_FACTORY_REG(ComplexAbs)
-
- /**
- *@brief Returns which elements of x are NaN.
-
- *@par Inputs:
- *x:A Tensor of type float16, float32, double.
-
- *@par Outputs:
- *y:A Tensor. Has the same shape as x. Returns which elements of x are isnan
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow IsNan operator.
- */
- REG_OP(IsNan)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .OP_END_FACTORY_REG(IsNan)
-
- /**
- *@brief Returns the real part of a complex number.
-
- *@par Inputs:
- *input:A Tensor. Must have numeric type.
-
- *@par Attributes:
- *Tout: Type of outputs. \n
-
- *@par Outputs:
- *output:A Tensor. Has the same shape as input.
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow Real operator.
- */
- REG_OP(Real)
- .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
- .ATTR(Tout, Type, DT_FLOAT)
- .OP_END_FACTORY_REG(Real)
-
- /**
- *@brief Returns the complex conjugate of a complex number.
-
- *@par Inputs:
- *input:A Tensor.
-
- *@par Outputs:
- *output:A Tensor. Has the same shape as input.
-
- *@par Third-party framework compatibility.
- *Compatible with tensorflow output operator.
- */
- REG_OP(Conj)
- .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(output, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OP_END_FACTORY_REG(Conj)
-
- /**
- *@brief The negative log likelihood loss . \n
-
- *@par Inputs:
- *The input x and weight must have the same type. Inputs include:
- *@li x: A Tensor dtype of float32.
- *@li target: A Tensor dtype of int32.
- *@li weight: A Tensor dtype of float32 . \n
-
- *@par Attributes:
- *@li reduction: An optional attribute. Defaults to "mean" .
- *@li ignore_index:An optional attribute.Defaults to -100 . \n
-
- *@par Outputs:
- *@li y: A Tensor dtype of float32.
- *@li total_weight: A Tensor dtype of float32 . \n
-
- *@par Third-party framework compatibility
- *Compatible with pytorch NLLLoss operator
- */
- REG_OP(NLLLoss)
- .INPUT(x, TensorType({DT_FLOAT}))
- .INPUT(target, TensorType({DT_INT32}))
- .OPTIONAL_INPUT(weight, TensorType({DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT}))
- .OUTPUT(total_weight, TensorType({DT_FLOAT}))
- .ATTR(reduction, String, "mean")
- .ATTR(ignore_index, Int, -100)
- .OP_END_FACTORY_REG(NLLLoss)
-
- /**
- *@brief The negative log likelihood loss grad . \n
-
- *@par Inputs:
- *@li x:A Tensor dtype of float32.
- *@li y_grad:A Tensor dtype of float32.
- *@li target:A Tensor dtype of int32.
- *@li weight:A Tensor dtype of float32.
- *@li total_weight:A Tensor dtype of float32 . \n
-
- *@par Attributes:
- *@li reduction: An optional attribute. Defaults to "mean" .
- *@li ignore_index:An optional attribute.Defaults to -100 . \n
-
- *@par Outputs:
- *x_grad: A Tensor. Must be the following type: float32 . \n
-
- *@par Third-party framework compatibility
- *Compatible with pytorch NLLLossGrad operator
- */
- REG_OP(NLLLossGrad)
- .INPUT(x, TensorType({DT_FLOAT}))
- .INPUT(y_grad, TensorType({DT_FLOAT}))
- .INPUT(target, TensorType({DT_INT32}))
- .INPUT(weight, TensorType({DT_FLOAT}))
- .INPUT(total_weight, TensorType({DT_FLOAT}))
- .OUTPUT(x_grad, TensorType({DT_FLOAT}))
- .ATTR(reduction, String, "mean")
- .ATTR(ignore_index, Int, -100)
- .OP_END_FACTORY_REG(NLLLossGrad)
-
- /**
- *@brief IFMR(Input Feature Map Reconstruction). \n
-
- *@par Inputs:
- *@li data: A Tensor of feature map.
- *@li data_min: A Tensor of min value of feature map.
- *@li data_max: A Tensor of max value of feature map.
- *@li cumsum: A Tensor of cumsum bin of data . \n
-
- *@par Attributes:
- *@li min_percentile: min init percentile.
- *@li max_percentile: max init percentile.
- *@li search_range: search range.
- *@li search_step: step size of searching.
- *@li with_offset: whether using offset . \n
-
- *@par Outputs:
- *@li scale: optimal scale.
- *@li offset: optimal offset . \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
- */
-
- REG_OP(IFMR)
- .INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(data_min, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(data_max, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(cumsum, TensorType({DT_INT32}))
- .OUTPUT(scale, TensorType({DT_FLOAT}))
- .OUTPUT(offset, TensorType({DT_FLOAT}))
- .REQUIRED_ATTR(min_percentile, Float)
- .REQUIRED_ATTR(max_percentile, Float)
- .REQUIRED_ATTR(search_range, ListFloat)
- .REQUIRED_ATTR(search_step, Float)
- .REQUIRED_ATTR(with_offset, Bool)
- .OP_END_FACTORY_REG(IFMR)
-
- /**
- *@brief Weights Adaptive Range Quantization. \n
-
- *@par Inputs:
- *@li w: A Tensor of weights. \n
- *@li w_min: A Tensor of weights reduce_min. \n
- *@li w_max: A Tensor of weights reduce_max. \n
-
- *@par Attributes:
- *@li num_bits: the bits num used for quantize.
- *@li offset_flag: whether using offset. \n
-
- *@par Outputs:
- *y: fake quantized weights. \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
-
- REG_OP(WtsARQ)
- .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(w_min, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(w_max, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(num_bits, Int, 8)
- .ATTR(offset_flag, Bool, false)
- .OP_END_FACTORY_REG(WtsARQ)
-
- /**
- *@brief Activations Universal Linear Quantization. \n
-
- *@par Inputs:
- *@li x: A Tensor of feature map.
- *@li clamp _min: A Tensor of min clamp value of feature map.
- *@li clamp _max: A Tensor of max clamp value of feature map.
-
- *@par Attributes:
- *@li fixed_min: fix min to zero.
- *@li num_bits: quant bits. \n
-
- *@par Outputs:
- *@li y: output fake quant feature map.
- *@li clamp_min_mask: where x > clamp_min.
- *@li clamp_min_mask: where x < clamp_max.
- *@li x_clamped_loss: clamp loss. \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
-
- REG_OP(ActsULQ)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_min, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_max, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(fixed_min, Bool, false)
- .ATTR(num_bits, Int, 8)
- .OP_END_FACTORY_REG(ActsULQ)
-
- /**
- *@brief The gradient of Activations Universal Linear Quantization. \n
-
- *@par Inputs:
- *@li y_grad: A Tensor of gradient.
- *@li clamp_min_mask: A Tensor of boolean mask indicating whether an additional one is needed'.
- *@li clamp_max_mask: A Tensor of boolean mask indicating whether an additional one is needed'.
-
- *@par Outputs:
- *x_grapd: The gradient of inpust. \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
-
- REG_OP(ActsULQInputGrad)
- .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(x_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OP_END_FACTORY_REG(ActsULQInputGrad)
-
- /**
- *@brief The gradient of Activations Universal Linear Quantization clamp max. \n
-
- *@par Inputs:
- *@li y_grad: A Tensor of gradient.
- *@li clamp_max_mask: A Tensor of boolean mask indicating whether an additional one is needed.
- *@li x_clamped_loss: A Tensor of gradient. \n
-
- *@par Outputs:
- *clamp_max_grad: The gradient of clamp max. \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
-
- REG_OP(ActULQClampMaxGrad)
- .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_max_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(clamp_max_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OP_END_FACTORY_REG(ActULQClampMaxGrad)
-
- /**
- *@brief The gradient of Activations Universal Linear Quantization clamp min. \n
-
- *@par Inputs:
- *@li y_grad: A Tensor of gradient.
- *@li clamp_min_mask: A Tensor of boolean mask indicating whether an additional one is needed.
- *@li x_clamped_loss: A Tensor of gradient. \n
-
- *@par Outputs:
- *clamp_min_grad: The gradient of clamp min. \n
-
- *@par Third-party framework compatibility
- *Compatible with mindspore
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
-
- REG_OP(ActULQClampMinGrad)
- .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(clamp_min_mask, TensorType({DT_BOOL, DT_FLOAT16, DT_FLOAT}))
- .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(clamp_min_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OP_END_FACTORY_REG(ActULQClampMinGrad)
-
- /**
- * @brief Computes Lp norm.
-
- * @par Inputs:
- * x: An ND tensor of type float16, float32. \n
- *
- * @par Attributes:
- * @li p: Int, "inf" or "-inf", default value is 2.
- * @li axes: ListInt, {} means all axes will be computed.
- * @li keepdim: Bool, default is false.
- * @li epsilon: Float, default is 1e-12. \n
-
- * @par Outputs:
- * y: An ND tensor of type float16, float32. The shape of y is depending
- * on axes and keepdim. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator LpNorm.
- */
- REG_OP(LpNorm)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(p, Int, 2)
- .ATTR(axes, ListInt, {})
- .ATTR(keepdim, Bool, false)
- .ATTR(epsilon, Float, 1e-12)
- .OP_END_FACTORY_REG(LpNorm)
-
- /**
- * @brief Computes LpNormReduce.
-
- * @par Inputs:
- * x: An ND tensor of type float16, float32. \n
- *
- * @par Attributes:
- * @li p: Int, "inf" or "-inf", default value is 2.
- * @li axes: ListInt, {} means all axes will be computed.
- * @li keepdim: Bool, default is false.
- * @li epsilon: Float, default is 1e-12. \n
-
- * @par Outputs:
- * y: An ND tensor of type float16, float32. The shape of y is depending
- * on axes and keepdim. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator LpNormReduce.
- */
- REG_OP(LpNormReduce)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(p, Int, 2)
- .ATTR(axes, ListInt, {})
- .ATTR(keepdim, Bool, false)
- .ATTR(epsilon, Float, 1e-12)
- .OP_END_FACTORY_REG(LpNormReduce)
-
- /**
- * @brief Computes LpNormUpdate.
-
- * @par Inputs:
- * x: An ND tensor of type float16, float32. \n
- *
- * @par Attributes:
- * @li p: Int, "inf" or "-inf", default value is 2.
- * @li epsilon: Float, default is 1e-12. \n
-
- * @par Outputs:
- * y: An ND tensor of type float16, float32. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator LpNormUpdate.
- */
- REG_OP(LpNormUpdate)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(p, Int, 2)
- .ATTR(epsilon, Float, 1e-12)
- .OP_END_FACTORY_REG(LpNormUpdate)
-
- /**
- * @brief get complex.
-
- * @par Inputs:
- * @li real: An ND tensor of type float32 double, representing the real part of a complex number.
- * @li imag: An ND tensor of type float32 double, representing the imaginary part of a complex number. \n
- *
- * @par Attributes:
- * Tout: representing the output of type.
- * @par Outputs:
- * out: An ND tensor of type complex64, complex128 \n
- */
- REG_OP(Complex)
- .INPUT(real, TensorType({DT_FLOAT, DT_DOUBLE}))
- .INPUT(imag, TensorType({DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(out, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .ATTR(Tout, Type, DT_COMPLEX64)
- .OP_END_FACTORY_REG(Complex)
-
- /**
- * @brief deal complex.
-
- * @par Inputs:
- * input: An ND tensor of type complex64, complex128 \n
-
- * @par Attributes:
- * Tout: representing the output of type.
-
- * @par Outputs:
- * output: An ND tensor of type float32. double \n
- */
- REG_OP(Imag)
- .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
- .ATTR(Tout, Type, DT_FLOAT)
- .OP_END_FACTORY_REG(Imag)
-
- /**
- * @brief deal complex.
-
- * @par Inputs:
- * @li input: An ND tensor of type complex64, complex128 \n
- *
- * @par Outputs:
- * @li output: An ND tensor of type float32. double \n
- */
- REG_OP(Angle)
- .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
- .ATTR(Tout, Type, DT_FLOAT)
- .OP_END_FACTORY_REG(Angle)
-
- /**
- *@brief Computes the gradient of SoftMarginLossGrad. \n
-
- *@par Inputs:
- *Three inputs, including:
- * @li predict: A tensor. Must be one of the following types:
- * float16, float32. \n
- * @li label: A tensor with same shape of predict. Must be one of the following types:
- * float16, float32. \n
- * @li dout: A tensor with same shpae of predcit. Must be one of the following types:
- * float16, float32. \n
-
- *@par Attributes:
- * reduction: Specifies the reduction to apply to the output:
- * 'none' | 'mean' | 'sum'. Default: 'mean'. \n
-
- *@par Outputs:
- * gradient: A Tensor with the same type of predict. \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator SoftMarginLoss Backward. \n
- */
- REG_OP(SoftMarginLossGrad)
- .INPUT(predict, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(label, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(dout, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OUTPUT(gradient, TensorType({DT_FLOAT16,DT_FLOAT}))
- .ATTR(reduction, String, "mean")
- .OP_END_FACTORY_REG(SoftMarginLossGrad)
-
- /**
- *@brief Calculate the cross product of two tensors. \n
-
- *@par Inputs:
- *One inputs, including:
- * @li x1: A tensor. Must be one of the following types:
- * float16, float32, int32, int8, uint8, int16. \n
- * @li x2: A tensor. Must be one of the following types:
- * float16, float32, int32, int8, uint8, int16. \n
-
- *@par Attributes:
- *@li dim: the dimination of compute.Defaults to -65530. \n
-
- *@par Outputs:
- *y: A Tensor with the same type and shape of x1's. \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator cross. \n
- */
- REG_OP(Cross)
- .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_INT16}))
- .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_INT16}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_UINT8, DT_INT16}))
- .ATTR(dim, Int, -65530)
- .OP_END_FACTORY_REG(Cross)
-
- /**
- *@brief Computes batched the p-norm distance between each pair of
- *the two collections of row vectors. \n
-
- *@par Inputs:
- *Two inputs, including:
- * @li x1: A tensor with shpae: BxPXM. Must be one of the following types:
- * float16, float32. \n
- * @li x2: A tensor with shpae: BxRxM. Must be one of the following types:
- * float16, float32. \n
-
- *@par Attributes:
- * @li p: An optional float >= 0 or inf. Defaults to 2.0. \n
-
- *@par Outputs:
- * y: A Tensor with the same type of x1's and with shape BxPxR. \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator Cdist. \n
- */
- REG_OP(Cdist)
- .INPUT(x1, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(x2, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .ATTR(p, Float, 2.0)
- .OP_END_FACTORY_REG(Cdist)
-
- /**
- *@brief Computes the grad of x1 in cdist. \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li grad: Grad with shape BxPxR. Must be one of the following types:
- * float16, float32. \n
- * @li x1: A tensor with shpae: BxPXM. Must be one of the following types:
- * float16, float32. \n
- * @li x2: A tensor with shpae: BxRxM. Must be one of the following types:
- * float16, float32. \n
- * @li cdist: Output tensor of cdist forward with shpae: BxPXR.
- * Must be one of the following types: float16, float32. \n
-
- *@par Attributes:
- * @li p: An optional float >= 0 or inf. Defaults to 2.0. \n
-
- *@par Outputs:
- * y: A Tensor with the same type and shape of x1's. \n
-
- *@par Third-party framework compatibility
- *Compatible with the Pytorch operator Cdist Backward. \n
- */
- REG_OP(CdistGrad)
- .INPUT(grad, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(x1, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(x2, TensorType({DT_FLOAT16,DT_FLOAT}))
- .INPUT(cdist, TensorType({DT_FLOAT16,DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
- .ATTR(p, Float, 2.0)
- .OP_END_FACTORY_REG(CdistGrad)
-
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_
|