You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

model_utils_unittest.cc 5.8 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define protected public
  18. #define private public
  19. #include "graph/load/model_manager/model_utils.h"
  20. #include "graph/manager/graph_var_manager.h"
  21. #include "graph/utils/tensor_utils.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. using namespace std;
  24. namespace ge {
  25. class UtestModelUtils : public testing::Test {
  26. protected:
  27. void TearDown() {}
  28. };
  29. static NodePtr CreateNode(ComputeGraph &graph, const string &name, const string &type, int in_num, int out_num) {
  30. OpDescPtr op_desc = std::make_shared<OpDesc>(name, type);
  31. op_desc->SetStreamId(0);
  32. static int32_t index = 0;
  33. op_desc->SetId(index++);
  34. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_FLOAT);
  35. TensorUtils::SetSize(tensor, 64);
  36. vector<int64_t> input_offset;
  37. for (int i = 0; i < in_num; i++) {
  38. op_desc->AddInputDesc(tensor);
  39. input_offset.emplace_back(i * 64);
  40. }
  41. op_desc->SetInputOffset(input_offset);
  42. vector<int64_t> output_offset;
  43. for (int i = 0; i < out_num; i++) {
  44. op_desc->AddOutputDesc(tensor);
  45. output_offset.emplace_back(in_num * 64 + i * 64);
  46. }
  47. op_desc->SetOutputOffset(output_offset);
  48. op_desc->SetWorkspace({});
  49. op_desc->SetWorkspaceBytes({});
  50. return graph.AddNode(op_desc);
  51. }
  52. // test ModelUtils::GetVarAddr
  53. TEST_F(UtestModelUtils, get_var_addr_hbm) {
  54. uint8_t test = 2;
  55. uint8_t *pf = &test;
  56. RuntimeParam runtime_param;
  57. runtime_param.session_id = 0;
  58. runtime_param.logic_var_base = 0;
  59. runtime_param.var_base = pf;
  60. runtime_param.var_size = 16;
  61. int64_t offset = 8;
  62. EXPECT_EQ(VarManager::Instance(runtime_param.session_id)->Init(0, 0, 0, 0), SUCCESS);
  63. EXPECT_NE(VarManager::Instance(runtime_param.session_id)->var_resource_, nullptr);
  64. VarManager::Instance(runtime_param.session_id)->var_resource_->var_offset_map_[offset] = RT_MEMORY_HBM;
  65. std::shared_ptr<OpDesc> op_desc = std::make_shared<OpDesc>("test", "test");
  66. uint8_t *var_addr = nullptr;
  67. EXPECT_EQ(ModelUtils::GetVarAddr(runtime_param, op_desc, offset, 0, var_addr), SUCCESS);
  68. EXPECT_EQ(runtime_param.var_base + offset - runtime_param.logic_var_base, var_addr);
  69. VarManager::Instance(runtime_param.session_id)->Destory();
  70. }
  71. TEST_F(UtestModelUtils, get_var_addr_rdma_hbm) {
  72. uint8_t test = 2;
  73. uint8_t *pf = &test;
  74. RuntimeParam runtime_param;
  75. runtime_param.session_id = 0;
  76. runtime_param.logic_var_base = 0;
  77. runtime_param.var_base = pf;
  78. int64_t offset = 8;
  79. EXPECT_EQ(VarManager::Instance(runtime_param.session_id)->Init(0, 0, 0, 0), SUCCESS);
  80. EXPECT_NE(VarManager::Instance(runtime_param.session_id)->var_resource_, nullptr);
  81. VarManager::Instance(runtime_param.session_id)->var_resource_->var_offset_map_[offset] = RT_MEMORY_RDMA_HBM;
  82. std::shared_ptr<OpDesc> op_desc = std::make_shared<OpDesc>("test", "test");
  83. uint8_t *var_addr = nullptr;
  84. EXPECT_EQ(ModelUtils::GetVarAddr(runtime_param, op_desc, offset, 0, var_addr), SUCCESS);
  85. EXPECT_EQ(reinterpret_cast<uint8_t *>(offset), var_addr);
  86. VarManager::Instance(runtime_param.session_id)->Destory();
  87. }
  88. TEST_F(UtestModelUtils, get_var_addr_rdma_hbm_negative_offset) {
  89. uint8_t test = 2;
  90. uint8_t *pf = &test;
  91. RuntimeParam runtime_param;
  92. runtime_param.session_id = 0;
  93. runtime_param.logic_var_base = 0;
  94. runtime_param.var_base = pf;
  95. int64_t offset = -1;
  96. EXPECT_EQ(VarManager::Instance(runtime_param.session_id)->Init(0, 0, 0, 0), SUCCESS);
  97. EXPECT_NE(VarManager::Instance(runtime_param.session_id)->var_resource_, nullptr);
  98. VarManager::Instance(runtime_param.session_id)->var_resource_->var_offset_map_[offset] = RT_MEMORY_RDMA_HBM;
  99. std::shared_ptr<OpDesc> op_desc = std::make_shared<OpDesc>("test", "test");
  100. uint8_t *var_addr = nullptr;
  101. EXPECT_NE(ModelUtils::GetVarAddr(runtime_param, op_desc, offset, 0, var_addr), SUCCESS);
  102. VarManager::Instance(runtime_param.session_id)->Destory();
  103. }
  104. TEST_F(UtestModelUtils, test_GetInputDataAddrs_input_const) {
  105. RuntimeParam runtime_param;
  106. uint8_t weight_base_addr = 0;
  107. runtime_param.session_id = 0;
  108. runtime_param.weight_base = &weight_base_addr;
  109. runtime_param.weight_size = 64;
  110. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test");
  111. NodePtr add_node = CreateNode(*graph, "add", ADD, 2, 1);
  112. auto op_desc = add_node->GetOpDesc();
  113. EXPECT_NE(op_desc, nullptr);
  114. vector<bool> is_input_const = {true, true};
  115. op_desc->SetIsInputConst(is_input_const);
  116. {
  117. auto tensor_desc = op_desc->MutableInputDesc(0);
  118. EXPECT_NE(tensor_desc, nullptr);
  119. TensorUtils::SetSize(*tensor_desc, 64);
  120. tensor_desc->SetShape(GeShape({1, 1}));
  121. tensor_desc->SetOriginShape(GeShape({1, 1}));
  122. TensorUtils::SetDataOffset(*tensor_desc, 0);
  123. }
  124. {
  125. auto tensor_desc = op_desc->MutableInputDesc(1);
  126. EXPECT_NE(tensor_desc, nullptr);
  127. TensorUtils::SetSize(*tensor_desc, 32);
  128. tensor_desc->SetShape(GeShape({1, 0}));
  129. tensor_desc->SetOriginShape(GeShape({1, 0}));
  130. TensorUtils::SetDataOffset(*tensor_desc, 64);
  131. }
  132. vector<void *> input_data_addr = ModelUtils::GetInputDataAddrs(runtime_param, op_desc);
  133. EXPECT_EQ(input_data_addr.size(), 2);
  134. EXPECT_EQ(input_data_addr.at(0), static_cast<void *>(&weight_base_addr + 0));
  135. EXPECT_EQ(input_data_addr.at(1), static_cast<void *>(&weight_base_addr + 64));
  136. }
  137. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示