You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

nn_calculation_ops.h 74 kB

5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /**
  2. * Copyright 2019 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file nn_calculation_ops.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_NN_CALCULATION_OPS_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_NN_CALCULATION_OPS_H_
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. * @brief Computes the gradients of depthwise convolution with respect to
  26. * the filter . \n
  27. * @par Inputs:
  28. * Three inputs include: \n
  29. * @li input: 4D origin shape of input tensor [N, C, H, W] or [N, H, W, C],
  30. * support float16, float32, double
  31. * @li filter_size: A 4D tensor of type int32, with shape [H, W, C, K]
  32. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C].
  33. * Must be one of the following types: float16, float32, double . \n
  34. * @par Attributes:
  35. * @li strides: A required list or tuple. The stride of the sliding window
  36. * for height and width of input "x" of the convolution.
  37. * Must be with shape [1, 1, stride_height, stride_width] or
  38. * [1, stride_height, stride_width, 1].
  39. * @li dilations: An optional list or tuple. The dilation factor for each
  40. * dimension of input "x".
  41. * If set to k > 1, there will be k-1 skipped cells between each filter element
  42. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  43. * or [1, dilation_height, dilation_width, 1].
  44. * @li pads: A required list or tuple. Padding added to each dimension of the
  45. * input.
  46. * @li data_format: An optional string. Input data format, either "NHWC" or
  47. * "NCHW" . \n
  48. * @par Outputs:
  49. * filter_grad: Gradient of the deep convolution relative to the filter with
  50. * shape [H, W, C, K]. Must be one of the following types: float16, float32,
  51. * double . \n
  52. * @attention Constraints:\n
  53. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  54. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  55. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  56. * [C1, Hf, Wf, K, Co, C0],
  57. * where K is fixed at 1, and Co and C0 are 16.\n
  58. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  59. * data is 5D with shape [N, C1, Ho, Wo, C0],
  60. * where C is the same as that of the feature map and C0 is 16.\n
  61. * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 *
  62. * stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512 . \n
  63. * @par Third-party framework compatibility
  64. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter.
  65. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropFilter.
  66. */
  67. REG_OP(DepthwiseConv2DBackpropFilter)
  68. .INPUT(input, TensorType({float16}))
  69. .INPUT(filter_size, TensorType({DT_INT32, DT_INT64}))
  70. .INPUT(out_backprop, TensorType({float16}))
  71. .OUTPUT(filter_grad, TensorType({float32}))
  72. .REQUIRED_ATTR(strides, ListInt)
  73. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  74. .REQUIRED_ATTR(pads, ListInt)
  75. .ATTR(data_format, String, "NHWC")
  76. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilter)
  77. /**
  78. * @brief Computes the gradients of depthwise convolution with respect to
  79. * the filter . \n
  80. * @par Inputs:
  81. * Two inputs include: \n
  82. * @li input: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of type float16
  83. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C],
  84. * of type float16
  85. * @par Attributes:
  86. * @li filter_size: A required list or tuple. Shape of filter.
  87. * @li strides: A required list or tuple. The stride of the sliding window for
  88. * height and width of input "x" of the convolution.
  89. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  90. * stride_width, 1].
  91. * @li dilations: An optional list or tuple. The dilation factor for each
  92. * dimension of input "x".
  93. * If set to k > 1, there will be k-1 skipped cells between each filter element
  94. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  95. * or [1, dilation_height, dilation_width, 1].
  96. * @li pads: A required list or tuple. Padding added to each dimension of the
  97. * input.
  98. * @li data_format: An optional string. Input data format, either "NHWC" or
  99. * "NCHW" . \n
  100. * @par Outputs:
  101. * filter_grad: Gradient of the deep convolution relative to the filter with
  102. * shape [H, W, C, K]. Must be of type float32 . \n
  103. * @attention Constraints:\n
  104. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  105. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  106. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  107. * [C1, Hf, Wf, K, Co, C0],
  108. * where K is fixed at 1, and Co and C0 are 16.\n
  109. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  110. * data is 5D with shape [N, C1, Ho, Wo, C0],
  111. * where C is the same as that of the feature map and C0 is 16.\n
  112. * Limited by Tiling and L1 / L0 buffer memory: 512 * ceil(Wo, 16) + (480 *
  113. * stride_h + 32 * filter_h) * ceil(Wi, 16) <= l1_size and Hf*Wf <= l0b_size/512 . \n
  114. * @par Third-party framework compatibility
  115. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropFilter.
  116. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropFilter.
  117. *
  118. * @par Restrictions:
  119. * Warning: THIS FUNCTION IS DEPRECATED. Please use DepthwiseConv2DBackpropFilter
  120. * instead.
  121. */
  122. REG_OP(DepthwiseConv2DBackpropFilterD)
  123. .INPUT(input, TensorType({float16}))
  124. .INPUT(out_backprop, TensorType({float16}))
  125. .OUTPUT(filter_grad, TensorType({float32}))
  126. .REQUIRED_ATTR(filter_size, ListInt)
  127. .REQUIRED_ATTR(strides, ListInt)
  128. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  129. .REQUIRED_ATTR(pads, ListInt)
  130. .ATTR(data_format, String, "NHWC")
  131. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropFilterD)
  132. /**
  133. * @brief Computes the gradients of depthwise convolution with respect to the
  134. * input . \n
  135. * @par Inputs:
  136. * Three inputs include: \n
  137. * @li input_size: 4D shape of input tensor [N, C, H, W] or [N, H, W, C],
  138. * support int32, int64
  139. * @li filter: 4D filter tensor with shape of [H, W, C, K], support float16.
  140. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C].
  141. * Must be one of the following types: float16 . \n
  142. * @par Attributes:
  143. * @li strides: A required list or tuple of int32. The stride of the sliding window for
  144. * height and width of input "x" of the convolution.
  145. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  146. * stride_width, 1].
  147. * @li dilations: An optional list or tuple of int32. The dilation factor for each
  148. * dimension of input "x". Defaults to "[1, 1, 1, 1]".
  149. * If set to k > 1, there will be k-1 skipped cells between each filter element
  150. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  151. * or [1, dilation_height, dilation_width, 1].
  152. * @li pads: A required list or tuple of int32. Padding added to each dimension of the
  153. * input.
  154. * @li data_format: An optional string. Input data format, either "NHWC" or
  155. * "NCHW". Defaults to "NHWC" . \n
  156. * @par Outputs:
  157. * input_grad: Gradient of the deep convolution relative to the input with shape
  158. * [N, C, H, W] or [N, H, W, C] Must be one of the following types: float16 . \n
  159. * @attention Constraints:\n
  160. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  161. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  162. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  163. * [C1, Hf, Wf, K, Co, C0],
  164. * where K is fixed at 1, and Co and C0 are 16.\n
  165. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  166. * data is 5D with shape [N, C1, Ho, Wo, C0],
  167. * where C is the same as that of the feature map and C0 is 16.\n
  168. * Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf *
  169. * Wf * C0 * C0 * 2) / (2 * Wo *C0).\n
  170. * @par Third-party framework compatibility
  171. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropInput.
  172. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropInput.
  173. */
  174. REG_OP(DepthwiseConv2DBackpropInput)
  175. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  176. .INPUT(filter, TensorType({DT_FLOAT16}))
  177. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  178. .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
  179. .REQUIRED_ATTR(strides, ListInt)
  180. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  181. .REQUIRED_ATTR(pads, ListInt)
  182. .ATTR(data_format, String, "NHWC")
  183. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInput)
  184. /**
  185. * @brief Computes the gradients of depthwise convolution with respect to the
  186. * input . \n
  187. * @par Inputs:
  188. * Two inputs include: \n
  189. * @li filter: A 4D tensor of type float16, with shape [H, W, C, K]
  190. * @li out_backprop: 4D tensor with shape [N, C, H, W] or [N, H, W, C], of
  191. * type float16
  192. * @par Attributes:
  193. * @li input_size: A required list or tuple. The origin shape of input.
  194. * @li strides: A required list or tuple. The stride of the sliding window for
  195. * height and width of input "x" of the convolution.
  196. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  197. * stride_width, 1].
  198. * @li dilations: An optional list or tuple. The dilation factor for each
  199. * dimension of input "x".
  200. * If set to k > 1, there will be k-1 skipped cells between each filter element
  201. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  202. * or [1, dilation_height, dilation_width, 1].
  203. * @li pads: A required list or tuple. Padding added to each dimension of the
  204. * input.
  205. * @li data_format: An optional string. Input data format, either "NHWC" or
  206. * "NCHW" . \n
  207. * @par Outputs:
  208. * input_grad: Gradient of the deep convolution relative to the input with
  209. * shape [N, C, H, W] or [N, H, W, C]. Must be of type float16 . \n
  210. * @attention Constraints:\n
  211. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  212. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  213. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  214. * [C1, Hf, Wf, K, Co, C0],
  215. * where K is fixed at 1, and Co and C0 are 16.\n
  216. * Output backprop is 4D with shape [N, C, Ho, Wo] or [N, Ho, Wo, C], but the
  217. * data is 5D with shape [N, C1, Ho, Wo, C0],
  218. * where C is the same as that of the feature map and C0 is 16.\n
  219. * Limited by Tiling: max_h_in_l1 >= C0, where max_h_in_l1 = (l1_size - Hf *
  220. * Wf * C0 * C0 * 2) / (2 * Wo *C0).\n
  221. * @par Third-party framework compatibility
  222. * @li Compatible with the TensorFlow operator DepthwiseConv2DBackpropInput.
  223. * @li Compatible with the Caffe operator DepthwiseConv2DBackpropInput.
  224. *
  225. * @par Restrictions:
  226. * Warning: THIS FUNCTION IS DEPRECATED. Please use DepthwiseConv2DBackpropInput
  227. * instead.
  228. */
  229. REG_OP(DepthwiseConv2DBackpropInputD)
  230. .INPUT(filter, TensorType({DT_FLOAT16}))
  231. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  232. .OUTPUT(input_grad, TensorType({DT_FLOAT16}))
  233. .REQUIRED_ATTR(input_size, ListInt)
  234. .REQUIRED_ATTR(strides, ListInt)
  235. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  236. .REQUIRED_ATTR(pads, ListInt)
  237. .ATTR(data_format, String, "NHWC")
  238. .OP_END_FACTORY_REG(DepthwiseConv2DBackpropInputD)
  239. /**
  240. *@brief Computes a 2D deep convolution given a 4D input tensor and a filter
  241. * tensor . \n
  242. *@par Inputs:
  243. *Two required inputs and two optional inputs, including: \n
  244. * @li x: A 4D tensor of type float16 or int8, with shape [N, C, H, W] or [N, H, W, C]
  245. * @li filter: A 4D tensor of type float16 or int8, with shape [H, W, C, K]
  246. * @li bias: An optional tensor of type float16 or int32
  247. * @li offset_w: An optional float16 or int8, used for quantized inference
  248. * @par Attributes:
  249. * @li strides: A required list or tuple. The stride of the sliding window for
  250. * height and width of input "x" of the convolution.
  251. * Must be with shape [1, 1, stride_height, stride_width] or [1, stride_height,
  252. * stride_width, 1].
  253. * @li dilations: An optional list or tuple. The dilation factor for each
  254. * dimension of input "x".
  255. * If set to k > 1, there will be k-1 skipped cells between each filter element
  256. * on that dimension. Must be with shape [1, 1, dilation_height, dilation_width]
  257. * or [1, dilation_height, dilation_width, 1]. Defaults to "[1, 1, 1, 1]".
  258. * @li pads: A required list or tuple of int32. Padding added to each dimension of the
  259. * input.
  260. * @li data_format: An optional string. Input data format, either "NHWC" or
  261. * "NCHW". Defaults to "NHWC".
  262. * @li offset_x: An optional int. Input offset, used for quantized inference.
  263. * Defaults to 0 . \n
  264. * @par Outputs:
  265. * y: 4D tensor of type float16 or int32, with shape [N, C, H, W] or [N, H, W, C]
  266. * @attention Constraints:\n
  267. * The feature map is 4D with shape [N, C, Hi, Wi] or [N, Hi, Wi, C], but
  268. * the data is 5D with shape [N, C1, Hi, Wi, C0], where C0 is 16.\n
  269. * The filter is 4D with shape [Hf, Wf, C, K], but the data is 6D with shape
  270. * [C1, Hf, Wf, K, Co, C0],
  271. * where K is fixed at 1, and Co and C0 are 16.\n
  272. * Limited by the size of L1 buffer memory: \n
  273. * (l1_size - filter_h*filter_w*BLOCK_SIZE*BLOCK_SIZE*data_size) // (Wi *
  274. * BLOCK_SIZE * data_size) >= (BLOCK_SIZE * strides_h + filter_h - strides_h).\n
  275. * @par Quantization supported or not
  276. * Yes
  277. * @par Third-party framework compatibility
  278. * @li Compatible with the TensorFlow operator DepthwiseConv2D.
  279. * @li Compatible with the Caffe operator DepthwiseConv2D.
  280. */
  281. REG_OP(DepthwiseConv2D)
  282. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  283. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  284. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  285. .OPTIONAL_INPUT(offset_w, TensorType({DT_FLOAT16, DT_INT8}))
  286. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  287. .REQUIRED_ATTR(strides, ListInt)
  288. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  289. .REQUIRED_ATTR(pads, ListInt)
  290. .ATTR(data_format, String, "NHWC")
  291. .ATTR(offset_x, Int, 0)
  292. .OP_END_FACTORY_REG(DepthwiseConv2D)
  293. /**
  294. *@brief Performs the the backward operation for "BiasAdd" on the "bias" tensor.
  295. * It accumulates all the values from out_backprop into the feature
  296. * dimension. For NHWC data format, the feature dimension is the last.
  297. * For NCHW data format, the feature dimension is the third-to-last . \n
  298. *@par Inputs:
  299. *x: A Tensor of type NumberType . \n
  300. *@par Attributes:
  301. *data_format: Data format. Defaults to "NHWC" . \n
  302. *@par Outputs:
  303. *y: A Tensor.Has the same type as "x" . \n
  304. *@par Third-party framework compatibility
  305. * Compatible with the TensorFlow operator BiasAddGrad.
  306. */
  307. REG_OP(BiasAddGrad)
  308. .INPUT(x, TensorType::NumberType())
  309. .OUTPUT(y, TensorType::NumberType())
  310. .ATTR(data_format, String, "NHWC")
  311. .OP_END_FACTORY_REG(BiasAddGrad)
  312. /**
  313. *@brief Computes the gradients of convolution with respect to the input.
  314. *@par Inputs:
  315. * Three inputs:
  316. * @li input_size: A const Tensor of type int32. Currently does not support
  317. * data tensor. An integer vector representing the shape of input, where
  318. * input is a 4-D tensor [batch, height, width, channels]
  319. * or [batch, channels, height, width].
  320. * @li filter: A Tensor. Must be one of the following types: float16, float32,
  321. * float64. 4-D with shape
  322. * [filter_height, filter_width, in_channels, out_channels]
  323. * or [out_channels, filter_height, filter_width, in_channels]
  324. * or [out_channels, in_channel, filter_height, filter_width].
  325. * @li out_backprop: A Tensor. Must have the same type as filter.
  326. * 4-D with shape [batch, out_height, out_width, out_channels]
  327. * or [batch, out_channels, out_height, out_width].
  328. * Gradients with respect to the output of the convolution.
  329. *\n
  330. *\n
  331. * The following are the supported data types and data formats:
  332. *@verbatim
  333. | Tensor | out_bckprop | filter | y
  334. ------------|-------------|---------|--------
  335. | Data Type | float16 | float16 | float16
  336. | |-------------|---------|--------
  337. | | float32 | float32 | float32
  338. | |-------------|---------|--------
  339. | | float64 | float64 | float64
  340. ------------|-------------|---------|--------
  341. | Format | NCHW | NCHW | NCHW
  342. | | NHWC | HWCN | NHWC
  343. @endverbatim
  344. * For float32 and float64 type, the actual calculation on the chip is based on
  345. * float16.
  346. *\n
  347. *
  348. *@par Attributes:
  349. * Five attributes:
  350. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  351. * for H/W dimension. The index of H/W is same as data_format.
  352. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads
  353. * on feature map
  354. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  355. * dimension of input, defaults to [1,1,1,1].
  356. * @li groups: Number of blocked connections from input channels to output
  357. * channels.
  358. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  359. * "NHWC". Specify the data format of the input and output data.
  360. *\n
  361. *\n
  362. * The following value range restrictions must be met:
  363. *@verbatim
  364. | Name | Field | Scope
  365. -------------------|----------|--------------
  366. | input_size | H | [1, 4096]
  367. | | W | [1, 4096]
  368. -------------------|----------|--------------
  369. | Filter | H | [1, 255]
  370. | | W | [1, 255]
  371. -------------------|----------|--------------
  372. | out_backprop | H*strideH| [1, 4096]
  373. | | W*strideW| [1, 4096]
  374. -------------------|----------|--------------
  375. | y(fmap) | H | [1, 4096]
  376. | | W | [1, 4096]
  377. -------------------|----------|--------------
  378. | Stride | H | [1, 63]
  379. | | W | [1, 63]
  380. -------------------|----------|--------------
  381. | Padding | Top | [0, 255]
  382. | | Bottom | [0, 255]
  383. | | Left | [0, 255]
  384. | | Right | [0, 255]
  385. -------------------|----------|--------------
  386. | Dilation | H | [1, 255]
  387. | | W | [1, 255]
  388. @endverbatim
  389. * In Ascend910, fmap or out_backprop's H and W not support 1 when
  390. * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1
  391. * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096
  392. *\n
  393. *
  394. *@par Outputs:
  395. * y: A Tensor. Has the same type as filter,and has same format as input_size.
  396. *\n
  397. * out_backprop_height = (fmap_height + pad_top + pad_bottom -
  398. * (dilation_h * (filter_height - 1) + 1))
  399. * / stride_h + 1
  400. *\n
  401. * out_backprop_width = (fmap_width + pad_left + pad_right -
  402. * (dilation_w * (filter_width - 1) + 1))
  403. * / stride_w + 1
  404. *\n
  405. *
  406. *@par Third-party framework compatibility
  407. * Compatible with Tensorflow's conv2d_backprop_input
  408. */
  409. REG_OP(Conv2DBackpropInput)
  410. .INPUT(input_size, TensorType({DT_INT32}))
  411. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  412. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  413. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  414. .REQUIRED_ATTR(strides, ListInt)
  415. .REQUIRED_ATTR(pads, ListInt)
  416. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  417. .ATTR(groups, Int, 1)
  418. .ATTR(data_format, String, "NHWC")
  419. .OP_END_FACTORY_REG(Conv2DBackpropInput)
  420. /**
  421. *@brief Computes the gradients of convolution with respect to the input.
  422. *@par Inputs:
  423. * Two inputs:
  424. * @li filter: A Tensor. Types is float16.
  425. * 4-D with shape [filter_height, filter_width, in_channels, out_channels]
  426. * or [out_channels, filter_height, filter_width, in_channels]
  427. * or [out_channels, in_channel, filter_height, filter_width].
  428. * @li out_backprop: A Tensor. Must have the same type as filter.
  429. * 4-D with shape [batch, out_height, out_width, out_channels]
  430. * or [batch, out_channels, out_height, out_width].
  431. * Gradients with respect to the output of the convolution.
  432. *@par Attributes:
  433. * Six attributes:
  434. * @li input_size A Tensor of type int32. An integer vector representing the
  435. * shape of input, where input is a 4-D tensor [batch, height, width, channels]
  436. * or [batch, channels, height, width].
  437. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  438. * for H/W dimension. The index of H/W is same as data_format.
  439. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  440. * feature map
  441. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  442. * dimension of input, defaults to [1,1,1,1].
  443. * @li groups: Number of blocked connections from input channels to output
  444. * channels.
  445. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  446. * "NHWC". Specify the data format of the input and output data.
  447. *@par Outputs:
  448. * y: A Tensor. Has the same type as filter,4-D tensor [batch, height, width,
  449. * channels] or [batch, channels, height, width].
  450. *@par Third-party framework compatibility
  451. * Compatible with Tensorflow's conv2d_backprop_input
  452. *@par Restrictions:
  453. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DBackpropInput instead.
  454. */
  455. REG_OP(Conv2DBackpropInputD)
  456. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  457. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_INT8}))
  458. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  459. .REQUIRED_ATTR(input_size, ListInt)
  460. .REQUIRED_ATTR(strides, ListInt)
  461. .REQUIRED_ATTR(pads, ListInt)
  462. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  463. .ATTR(groups, Int, 1)
  464. .ATTR(data_format, String, "NHWC")
  465. .OP_END_FACTORY_REG(Conv2DBackpropInputD)
  466. /**
  467. *@brief Computes the Deconvolution with respect to the input.
  468. *@par Inputs:
  469. * Three inputs:
  470. * @li x: A Tensor of type float16 or int8. 4D with shape
  471. * [batch, out_channels, out_height, out_width]. Gradients with respect
  472. * to the output of the convolution.
  473. * @li filter: A Tensor. Must have the same type as "x".
  474. * 4D with shape [out_channels, in_channel, filter_height, filter_width].\n
  475. * Two optional inputs:
  476. * @li bias: An optional tensor. Must have the same type as "y".
  477. * @li offset_w: An optional 1D tensor for quantized deconvolution.
  478. * Type is int8. Reserved.\n
  479. *\n
  480. *\n
  481. * The following are the supported data types and data formats:
  482. *@verbatim
  483. | Tensor | x | filter | bias | y
  484. ------------|---------|---------|---------|--------
  485. | Data Type | float16 | float16 | float16 | float16
  486. | |---------|---------|---------|--------
  487. | | int8 | int8 | int32 | int32
  488. ------------|---------|---------|---------|--------
  489. | Format | NCHW | NCHW | ND | NCHW
  490. @endverbatim
  491. * For int8, a dequant or requant operator must be followed.
  492. *\n
  493. *
  494. *@par Attributes:
  495. * Six attributes:
  496. * @li strides: A tuple or list of 2 integers. The stride of the sliding window
  497. * for H/W dimension, defaults to [1,1].
  498. * @li pads: A tuple or list of 4 integers. The [top, bottom, left, right]
  499. * padding on the feature map, defaults to [0,0,0,0].
  500. * @li dilations: A tuple or list of 4 integers. The dilation factor for each
  501. * dimension of input, defaults to [1,1,1,1].
  502. * @li groups: Number of blocked connections from input channels to
  503. output channels. Defaults to "1".
  504. * @li data_format: An optional string from: "NCHW". Defaults to "NCHW". \n
  505. Specify the data format of the input and output data.
  506. * @li offset_x: An optional integer for quantized deconvolution.
  507. * The negative offset added to the input image for int8 type. Ensure offset_x
  508. * within the effective range of int8 [-128, 127]. Defaults to "0".
  509. *\n
  510. *\n
  511. * The following value range restrictions must be met:
  512. *@verbatim
  513. | Name | Field | Scope
  514. -------------------|----------|--------------
  515. | x (out_backprop) | H*strideH| [1, 4096]
  516. | | W*strideW| [1, 4096]
  517. -------------------|----------|--------------
  518. | Filter | H | [1, 255]
  519. | | W | [1, 255]
  520. -------------------|----------|--------------
  521. | y (fmap) | H | [1, 4096]
  522. | | W | [1, 4096]
  523. -------------------|----------|--------------
  524. | Stride | H | [1, 63]
  525. | | W | [1, 63]
  526. -------------------|----------|--------------
  527. | Padding | Top | [0, 255]
  528. | | Bottom | [0, 255]
  529. | | Left | [0, 255]
  530. | | Right | [0, 255]
  531. -------------------|----------|--------------
  532. | Dilation | H | [1, 255]
  533. | | W | [1, 255]
  534. -------------------|----------|--------------
  535. | Offset_x | | [-128, 127]
  536. @endverbatim
  537. * In Ascend910, fmap or out_backprop's H and W not support 1 when
  538. * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1
  539. * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096
  540. *\n
  541. *
  542. *@par Outputs:
  543. * y: A Tensor. 4D tensor with shape [batch, channels, height, width].
  544. *\n
  545. * out_backprop_height = (fmap_height + pad_top + pad_bottom -
  546. * (dilation_h * (filter_height - 1) + 1))
  547. * / stride_h + 1
  548. *\n
  549. * out_backprop_width = (fmap_width + pad_left + pad_right -
  550. * (dilation_w * (filter_width - 1) + 1))
  551. * / stride_w + 1
  552. *\n
  553. *
  554. * When type of x is float16, the type of y must be float16.
  555. * When type of x is int8, the type of y must be int32.
  556. */
  557. REG_OP(Deconvolution)
  558. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  559. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  560. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  561. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  562. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  563. .ATTR(strides, ListInt, {1, 1})
  564. .ATTR(pads, ListInt, {0, 0, 0, 0})
  565. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  566. .ATTR(groups, Int, 1)
  567. .ATTR(data_format, String, "NCHW")
  568. .ATTR(offset_x, Int, 0)
  569. .OP_END_FACTORY_REG(Deconvolution)
  570. /**
  571. *@brief Computes the gradients of convolution with respect to the filter
  572. *@par Inputs:
  573. * Three inputs:
  574. * @li x: A Tensor. Must be one of the following types: float16, float32,
  575. * float64.4-D with shape [batch, in_height, in_width, in_channels] or
  576. * [batch, in_channels, in_height, in_width].
  577. * @li filter_size: A const Tensor of type int32. Currently does not support
  578. * data tensor. An integer vector representing the tensor shape of filter,
  579. * where filter is a 4-D tensor [filter_height, filter_width, in_channels,
  580. * out_channels] or [out_channels, filter_height, filter_width, in_channels]
  581. * or [out_channels, in_channel, filter_height, filter_width].
  582. * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape
  583. * [batch, out_height, out_width, out_channels] or [batch, out_channels,
  584. * out_height, out_width]. Gradients with respect to the output of the
  585. * convolution.
  586. *\n
  587. *\n
  588. * The following are the supported data types and data formats:
  589. *@verbatim
  590. | Tensor | x | out_backprop | y
  591. ------------|---------|--------------|---------
  592. | Data Type | float16 | float16 | float16
  593. | |---------|--------------|---------
  594. | | float32 | float32 | float32
  595. | |---------|--------------|---------
  596. | | float64 | float64 | float64
  597. |-----------|---------|--------------|---------
  598. | Format | NCHW | NCHW | NCHW
  599. | | NHWC | NHWC | HWCN
  600. @endverbatim
  601. * For float32 and float64 type of x and outbackprop, the actual calculation on the chip
  602. * is based on float16.
  603. *\n
  604. *
  605. *@par Attributes:
  606. * Five attributes:
  607. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  608. * for H/W dimension. The index of H/W is same as data_format.
  609. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  610. * feature map.
  611. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  612. * dimension of input, defaults to [1,1,1,1].
  613. * @li groups: Number of blocked connections from input channels to output
  614. * channels.
  615. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  616. * "NHWC". Specify the data format of the input and output data.
  617. *\n
  618. *\n
  619. * The following value range restrictions must be met:
  620. *@verbatim
  621. | Name | Field | Scope
  622. -------------------|----------|--------------
  623. | x(fmap) | H | [1, 4096]
  624. | | W | [1, 4096]
  625. -------------------|----------|--------------
  626. | Filter Size | H | [1, 255]
  627. | | W | [1, 255]
  628. -------------------|----------|--------------
  629. | out_backprop | H | [1, 4096]
  630. | | W | [1, 4096]
  631. -------------------|----------|--------------
  632. | y | H | [1, 4096]
  633. | | W | [1, 4096]
  634. -------------------|----------|--------------
  635. | Stride | H | [1, 63]
  636. | | W | [1, 63]
  637. -------------------|----------|--------------
  638. | Padding | Top | [0, 255]
  639. | | Bottom | [0, 255]
  640. | | Left | [0, 255]
  641. | | Right | [0, 255]
  642. -------------------|----------|--------------
  643. | Dilation | H | [1, 255]
  644. | | W | [1, 255]
  645. @endverbatim
  646. * In Ascend910, out_backprop's H and W not support 1 when
  647. * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1
  648. *\n
  649. *
  650. *@par Outputs:
  651. * y: A Tensor. Has the same type as x, has the same format as filter_size.
  652. *\n
  653. * out_backprop_height = (in_height + pad_top + pad_bottom -
  654. * (dilation_h * (filter_height - 1) + 1))
  655. * / stride_h + 1
  656. *\n
  657. * out_backprop_width = (in_width + pad_left + pad_right -
  658. * (dilation_w * (filter_width - 1) + 1))
  659. * / stride_w + 1
  660. *\n
  661. *
  662. *@par Third-party framework compatibility
  663. * Compatible with Tensorflow's conv2d_backprop_filter
  664. */
  665. REG_OP(Conv2DBackpropFilter)
  666. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  667. .INPUT(filter_size, TensorType({DT_INT32}))
  668. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  669. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  670. .REQUIRED_ATTR(strides, ListInt)
  671. .REQUIRED_ATTR(pads, ListInt)
  672. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  673. .ATTR(groups, Int, 1)
  674. .ATTR(data_format, String, "NHWC")
  675. .OP_END_FACTORY_REG(Conv2DBackpropFilter)
  676. /**
  677. *@brief Computes the gradients of convolution with respect to the filter.
  678. *@par Inputs:
  679. * Two inputs:
  680. * @li x: A Tensor. Type is float16.
  681. * 4-D with shape [batch, in_height, in_width, in_channels] or [batch,
  682. * in_channels, in_height, in_width].
  683. * @li out_backprop: A Tensor. Must have the same type as x. 4-D with shape
  684. * [batch, out_height, out_width, out_channels] or [batch, out_channels,
  685. * out_height, out_width]. Gradients with respect to the output of the
  686. * convolution.
  687. *@par Attributes:
  688. * Six attributes:
  689. * @li filter_size: A Tensor of type integers. An integer vector representing
  690. * the tensor shape of filter,
  691. * where filter is a 4-D tensor [filter_height, filter_width, in_channels,
  692. * out_channels] or [out_channels, filter_height, filter_width, in_channels]
  693. * or [out_channels, in_channel, filter_height, filter_width].
  694. * @li strides: A tuple/list of 4 integers. The stride of the sliding window
  695. * for H/W dimension. The index of H/W is same as data_format.
  696. * @li pads: A tuple/list of 4 integers, [top, bottom, left, right] pads on
  697. * feature map
  698. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  699. * dimension of input, defaults to [1,1,1,1].
  700. * @li groups: Number of blocked connections from input channels to output
  701. * channels.
  702. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to
  703. * "NHWC". Specify the data format of the input and output data.
  704. *@par Outputs:
  705. * y: A Tensor. Type is float32, a 4-D tensor [filter_height, filter_width,
  706. * in_channels, out_channels] or [out_channels, filter_height, filter_width,
  707. * in_channels] or [out_channels, in_channel, filter_height, filter_width].
  708. * Compatible with Tensorflow's conv2d_backprop_filter
  709. *@par Restrictions:
  710. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DBackpropFilter instead.
  711. */
  712. REG_OP(Conv2DBackpropFilterD)
  713. .INPUT(x, TensorType({DT_FLOAT16}))
  714. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  715. .OUTPUT(y, TensorType({DT_FLOAT}))
  716. .REQUIRED_ATTR(filter_size, ListInt)
  717. .REQUIRED_ATTR(strides, ListInt)
  718. .REQUIRED_ATTR(pads, ListInt)
  719. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  720. .ATTR(groups, Int, 1)
  721. .ATTR(data_format, String, "NHWC")
  722. .OP_END_FACTORY_REG(Conv2DBackpropFilterD)
  723. /**
  724. *@brief Computes a 2D convolution given 4D "x" and "filter" tensors.
  725. *@par Inputs:
  726. *@li x: A 4D tensor of input image. With the format "NHWC", the data is stored
  727. * in the order of: [batch, in_height, in_width, in_channels].
  728. *@li filter: A 4D tensor of learnable filters. Must have the same type as "x".
  729. * With the format "HWCN" , the data is stored in the order of: [filter_height,
  730. * filter_width, in_channels / groups, out_channels].
  731. *@li bias: An optional 1D tensor of additive biases to the filter outputs.
  732. * The data is stored in the order of: [out_channels].
  733. *@li offset_w: Reserved.
  734. *\n
  735. *\n
  736. * The following are the supported data types and data formats:
  737. *@verbatim
  738. | Tensor | x | filter | bias | y
  739. ------------|---------|---------|---------|--------
  740. | Data Type | float16 | float16 | float16 | float16
  741. | |---------|---------|---------|--------
  742. | | float32 | float32 | float32 | float32
  743. | |---------|---------|---------|--------
  744. | | int8 | int8 | int32 | int32
  745. ------------|---------|---------|---------|--------
  746. | Format | NCHW | NCHW | ND | NCHW
  747. | | NHWC | HWCN | | NHWC
  748. @endverbatim
  749. * For float32 type, the actual calculation on the chip is based on
  750. * float16. For int8, a dequant or requant operator must be followed.
  751. *\n
  752. *
  753. *@par Attributes:
  754. *@li strides: Required. A list of 4 integers. The stride of the sliding window
  755. * for each dimension of input. The dimension order is determined by the data
  756. * format of "x". The N and C dimensions must be set to 1.
  757. *@li pads: Required. A list of 4 integers. The number of pixels to add to each
  758. * (top, bottom, left, right) side of the input.
  759. *@li dilations: Optional. A list of 4 integers. The dilation factor for each
  760. * dimension of input. The dimension order is determined by the data format of
  761. * "x". The N and C dimensions must be set to 1. Defaults to [1, 1, 1, 1].
  762. *@li groups: Optional. An integer of type int32. The number of blocked
  763. * connections from input channels to output channels. In_channels and
  764. * out_channels must both be divisible by "groups". Defaults to 1.
  765. *@li offset_x: Optional. An integer of type int32. The negative offset added
  766. * to the input image for int8 type. Ensure that the output is within the
  767. * effective range. Defaults to 0.
  768. *@li data_format: Reserved.
  769. *\n
  770. *\n
  771. * The following value range restrictions must be met:
  772. *@verbatim
  773. | Name | Field | Scope
  774. -------------------|----------|--------------
  775. | Input Image Size | H | [1, 100000]
  776. | | W | [1, 4096]
  777. -------------------|----------|--------------
  778. | Filter Size | H | [1, 255]
  779. | | W | [1, 255]
  780. -------------------|----------|--------------
  781. | Stride | H | [1, 63]
  782. | | W | [1, 63]
  783. -------------------|----------|--------------
  784. | Padding | Top | [0, 255]
  785. | | Bottom | [0, 255]
  786. | | Left | [0, 255]
  787. | | Right | [0, 255]
  788. -------------------|----------|--------------
  789. | Dilation | H | [1, 255]
  790. | | W | [1, 255]
  791. -------------------|----------|--------------
  792. | Offset_x | | [-128, 127]
  793. @endverbatim
  794. * The W dimension of the input image supports cases exceeding 4096, but it may
  795. * cause compilation errors.
  796. *\n
  797. *
  798. *@par Outputs:
  799. *@li y: A 4D Tensor of output feature map. Has the same type as "x". With the
  800. * format "NHWC", the data is stored in the order of: [batch, out_height,
  801. * out_width, out_channels].
  802. *\n
  803. * out_height = (in_height + pad_top + pad_bottom -
  804. * (dilation_h * (filter_height - 1) + 1))
  805. * / stride_h + 1
  806. *\n
  807. * out_width = (in_width + pad_left + pad_right -
  808. * (dilation_w * (filter_width - 1) + 1))
  809. * / stride_w + 1
  810. *\n
  811. *
  812. *@par Quantization supported or not
  813. *@li Yes
  814. *
  815. *@par Third-party framework compatibility
  816. *@li Compatible with the TensorFlow operator "conv2d".
  817. *@li Compatible with the Caffe operator 2D "Convolution".
  818. */
  819. REG_OP(Conv2D)
  820. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  821. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  822. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  823. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  824. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  825. .REQUIRED_ATTR(strides, ListInt)
  826. .REQUIRED_ATTR(pads, ListInt)
  827. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  828. .ATTR(groups, Int, 1)
  829. .ATTR(data_format, String, "NHWC")
  830. .ATTR(offset_x, Int, 0)
  831. .OP_END_FACTORY_REG(Conv2D)
  832. /**
  833. *@brief Computes a 2D convolution given 4D "x" and "filter_compress" tensors.
  834. *@par Inputs:
  835. * @li x: A 4D tensor of input images.
  836. * @li filter_compress: A 4D tensor of compressed filters.
  837. * @li compress_index: A 1D Tensor dtype of int8.
  838. * @li bias: An optional 1D tensor.
  839. * @li offset_w: An optional 1D tensor for quantized convolution. Reserved.
  840. *
  841. * The input and output tensor attributes are listed as follows:
  842. * @verbatim
  843. |Tensor | x | filter_compress | bias | offset_w | y
  844. -----------|---------|---------|---------|----------|--------
  845. |Data Type | float16 | float16 | float16 | _ | float16
  846. | |---------|---------|---------|----------|--------
  847. | | float32 | float32 | float32 | _ | float32
  848. | |---------|---------|---------|----------|--------
  849. | | int8 | int8 | int32 | int8 | int32
  850. -----------|---------|---------|---------|----------|--------
  851. |Format | NCHW | NCHW | ND | ND | NCHW
  852. | | NHWC | NHWC | | | NHWC
  853. | | | HWCN | | |
  854. @endverbatim
  855. * It should be noted that the data types must correspond to each other, but the
  856. * format does not need to . \n
  857. *@par Attributes:
  858. * @li strides: A list of 4 integers. Specifying the strides of the
  859. * convolution along the height and width. The dimension order is determined
  860. * by the data format of "x". By default the N and C dimensions are set to 1.
  861. * @li pads: A list of 4 integers. Specifying the top, bottom, left and right
  862. * padding.
  863. * @li dilations: A list of 4 integers. Specifying the dilation rate to use
  864. * for dilated convolution. Has the same dimension order and value as "strides".
  865. * @li groups: Number of blocked connections from input channels to output
  866. * channels. Input channels and output channels must both be divisible by
  867. * "groups".Type is int32.
  868. * @li offset_x: An optional integer for quantized convolution. Type is int32.
  869. * Defaults to "0".
  870. * @li data_format: An optional string from: "NHWC", "NCHW". Specifying the
  871. * data format of the input and output images. Type is string.
  872. * Defaults to "NHWC". Reserved . \n
  873. *@par Outputs:
  874. * @li y: A 4D Tensor of output images . \n
  875. *@par Restrictions:
  876. *Warning: THIS FUNCTION IS DEPRECATED.
  877. */
  878. REG_OP(Conv2DCompress)
  879. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  880. .INPUT(filter_compress, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8}))
  881. .INPUT(compress_index, TensorType({DT_INT8}))
  882. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  883. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  884. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
  885. .REQUIRED_ATTR(strides, ListInt)
  886. .REQUIRED_ATTR(pads, ListInt)
  887. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  888. .ATTR(groups, Int, 1)
  889. .ATTR(data_format, String, "NHWC")
  890. .ATTR(offset_x, Int, 0)
  891. .OP_END_FACTORY_REG(Conv2DCompress)
  892. /**
  893. *@brief Computes a 2D deformable convolution given 4D "x", "filter" and
  894. * "offsets" tensors.
  895. *@par Inputs:
  896. *@li x: A 4D tensor of input image. With the format "NHWC", the data is stored
  897. * in the order of: [batch, in_height, in_width, in_channels].
  898. *@li filter: A 4D tensor of learnable filters. Must have the same type as "x".
  899. * With the format "HWCN" , the data is stored in the order of: [filter_height,
  900. * filter_width, in_channels / groups, out_channels].
  901. *@li offsets: A 4D tensor of x-y coordinates offset and mask. With the format
  902. * "NHWC", the data is stored in the order of: [batch, out_height, out_width,
  903. * deformable_groups * filter_height * filter_width * 3].
  904. *@li bias: An optional 1D tensor of additive biases to the filter outputs.
  905. * The data is stored in the order of: [out_channels].
  906. *\n
  907. *\n
  908. * The following are the supported data types and data formats:
  909. *@verbatim
  910. | Tensor | x | filter | offsets | bias | y
  911. ------------|---------|---------|---------|----------|--------
  912. | Data Type | float16 | float16 | float16 | float16 | float16
  913. | |---------|---------|---------|----------|--------
  914. | | float32 | float32 | float32 | float32 | float32
  915. ------------|---------|---------|---------|----------|--------
  916. | Format | NCHW | NCHW | NCHW | ND | NCHW
  917. | | NHWC | HWCN | NHWC | | NHWC
  918. @endverbatim
  919. * For float32 type, the actual convolution calculation part on the chip is
  920. * based on float16.
  921. *\n
  922. *
  923. *@par Attributes:
  924. *@li strides: Required. A list of 4 integers. The stride of the sliding window
  925. * for each dimension of input. The dimension order is interpreted according to
  926. * the data format of "x". The N and C dimensions must be set to 1.
  927. *@li pads: Required. A list of 4 integers. The number of pixels to add to each
  928. * (top, bottom, left, right) side of the input.
  929. *@li dilations: Optional. A list of 4 integers. The dilation factor for each
  930. * dimension of input. The dimension order is interpreted according to the data
  931. * format of "x". The N and C dimensions must be set to 1. Defaults to
  932. * [1, 1, 1, 1].
  933. *@li groups: Optional. An integer of type int32. The number of blocked
  934. * connections from input channels to output channels. In_channels and
  935. * out_channels must both be divisible by "groups". Defaults to 1.
  936. *@li data_format: Reserved.
  937. *@li deformable_groups: Optional. An integer of type int32. The number of
  938. * deformable group partitions. In_channels must be divisible by
  939. * "deformable_groups". Defaults to 1.
  940. *\n
  941. *\n
  942. * The following value range restrictions must be met:
  943. *@verbatim
  944. | Name | Field | Scope
  945. --------------------|--------|----------------------------
  946. | Input Image Size | H | [1, 100000 / filter_height]
  947. | | W | [1, 4096 / filter_width]
  948. --------------------|--------|----------------------------
  949. | Filter Size | H | [1, 63]
  950. | | W | [1, 63]
  951. @endverbatim
  952. *\n
  953. *
  954. *@par Outputs:
  955. *@li y: A 4D Tensor of output feature map. Has the same type as "x". With the
  956. * format "NHWC", the data is stored in the order of: [batch, out_height,
  957. * out_width, out_channels].
  958. *\n
  959. * out_height = (in_height + pad_top + pad_bottom -
  960. * (dilation_h * (filter_height - 1) + 1))
  961. * / stride_h + 1
  962. *\n
  963. * out_width = (in_width + pad_left + pad_right -
  964. * (dilation_w * (filter_width - 1) + 1))
  965. * / stride_w + 1
  966. *\n
  967. *
  968. *@par Quantization supported or not
  969. *@li No
  970. *
  971. *@par Third-party framework compatibility
  972. *@li Compatible with the Mxnet operator "DeformableConvolution".
  973. *@li Compatible with the Paddlepaddle operator "deformable_conv".
  974. *@li Compatible with the Mmcv operator "deform_conv".
  975. */
  976. REG_OP(DeformableConv2D)
  977. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  978. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT}))
  979. .INPUT(offsets, TensorType({DT_FLOAT16, DT_FLOAT}))
  980. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_FLOAT}))
  981. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  982. .REQUIRED_ATTR(strides, ListInt)
  983. .REQUIRED_ATTR(pads, ListInt)
  984. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  985. .ATTR(groups, Int, 1)
  986. .ATTR(data_format, String, "NHWC")
  987. .ATTR(deformable_groups, Int, 1)
  988. .OP_END_FACTORY_REG(DeformableConv2D)
  989. /**
  990. *@brief Computes a 3D convolution given 5D "x" and "filter" tensors.
  991. *@par Inputs:
  992. * @li x: A 5D tensor. Must be one of the following types: float16,
  993. * (Currently does not support int8). The format of x is NCDHW or NDHWC.
  994. * @li filter: A 5D tensor of the same type as "x".
  995. * (Currently does not support int8).
  996. * The format is NCDHW, NDHWC or DHWCN . \n
  997. *@par Optional input:
  998. * @li bias: An optional 1D tensor of the same type as "x".
  999. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  1000. *@par Required Attributes:
  1001. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  1002. * for each dimension of "x".
  1003. * The N and C dimensions must be 1. Has the same format as "x".
  1004. * @li pads: A list of 6 integers.
  1005. * Supports only padding along the D, H and W dimensions in sequence of head,
  1006. * tail, top, bottom, left and right . \n
  1007. *@par Attributes:
  1008. * @li groups: Number of blocked connections from input channels to output
  1009. * channels.
  1010. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1011. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1012. * @li dilations: A list of 5 integers. Specifies the dilation factor for each
  1013. * dimension of "x".
  1014. * The N, C and D dimensions must be 1. Has the same format as "x".
  1015. * @li offset_x: An optional int. Input offset, used for quantized inference.
  1016. * Defaults to 0. Reserved . \n
  1017. *@par Outputs:
  1018. *y: A Tensor. Has the same type and data format as "x". \n
  1019. *@attention Constraints:
  1020. *The image size after padding is greater than the filter size . \n
  1021. *@par Third-party framework compatibility
  1022. * @li Compatible with the TensorFlow operator conv3d.
  1023. * @li Compatible with the Caffe operator Convolution.
  1024. */
  1025. REG_OP(Conv3D)
  1026. .INPUT(x, TensorType({DT_FLOAT16}))
  1027. .INPUT(filter, TensorType({DT_FLOAT16}))
  1028. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  1029. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1030. .OUTPUT(y, TensorType({DT_FLOAT16}))
  1031. .REQUIRED_ATTR(strides, ListInt)
  1032. .REQUIRED_ATTR(pads, ListInt)
  1033. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1034. .ATTR(groups, Int, 1)
  1035. .ATTR(data_format, String, "NDHWC")
  1036. .ATTR(offset_x, Int, 0)
  1037. .OP_END_FACTORY_REG(Conv3D)
  1038. /**
  1039. *@brief Computes the gradients of convolution 3d with respect to the input.
  1040. *@par Inputs:
  1041. * Three inputs:
  1042. * @li input_size: A Tensor of type int32, int64. An integer vector representing
  1043. * the shape of input, where input is a 5-D tensor
  1044. * [batch, depth, height, width, channels] or
  1045. * [batch, channels, depth, height, width].
  1046. * @li filter: A Tensor. Must be one of the following types: float16, float32.
  1047. * Currently does not support double.
  1048. * @li out_backprop: A Tensor. Must have the same type as filter.
  1049. * 5-D with shape [batch, depth, out_height, out_width, out_channels]
  1050. * or [batch, out_channels, depth, out_height, out_width]. Gradients with
  1051. * respect to the output of the convolution . \n
  1052. *@par Required Attributes:
  1053. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  1054. * for each dimension of "out_backprop".
  1055. * The N and C dimensions must be 1. Has the same format as "out_backprop".
  1056. * @li pads: A list of 6 integers.
  1057. * Supports only padding along the D, H and W dimensions in sequence of head,
  1058. * tail, top, bottom, left and right . \n
  1059. *@par Attributes:
  1060. * Three attributes:
  1061. * @li groups: Number of blocked connections from input channels to output
  1062. * channels.
  1063. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1064. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1065. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  1066. * dimension of the input.
  1067. * The N, C and D dimensions must be 1. Has the same format as "out_backprop".
  1068. *@par Outputs:
  1069. * y: A Tensor. Has the same type as filter,and has same format as "input_size"
  1070. *@par Third-party framework compatibility
  1071. * Compatible with Tensorflow's conv3d_backprop_input
  1072. */
  1073. REG_OP(Conv3DBackpropInput)
  1074. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  1075. .INPUT(filter, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1076. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1077. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1078. .REQUIRED_ATTR(strides, ListInt)
  1079. .REQUIRED_ATTR(pads, ListInt)
  1080. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1081. .ATTR(groups, Int, 1)
  1082. .ATTR(data_format, String, "NDHWC")
  1083. .OP_END_FACTORY_REG(Conv3DBackpropInput)
  1084. /**
  1085. *@brief Computes the gradients of convolution 3d with respect to the input.
  1086. *@par Inputs:
  1087. * Two inputs:
  1088. * @li filter: A Tensor whose type is float16. The format of filter is NCDHW,
  1089. * NDHWC or DHWCN.
  1090. * @li out_backprop: A Tensor. Must have the same type as filter. The format is
  1091. * NDHWC or NCDHW. \n
  1092. *@par Required Attributes:
  1093. * @li strides: A list of 5 integers. Specifies the stride of the sliding window
  1094. * for each dimension of "out_backprop".
  1095. * The N and C dimensions must be 1. Has the same format as "out_backprop".
  1096. * @li pads: A list of 6 integers. Supports only padding along the D, H and W
  1097. * dimensions in sequence of head, tail, top, bottom, left and right.
  1098. * @li input_size: A tuple/list of type int32, int64. An integer vector
  1099. * representing the shape of input, where input is a 5-D tensor
  1100. * [batch, depth, height, width, channels] or
  1101. * [batch, channels, depth, height, width] . \n
  1102. *@par Attributes:
  1103. * Three attributes:
  1104. * @li groups: Number of blocked connections from input channels to output
  1105. * channels.
  1106. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1107. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1108. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  1109. * dimension of input.
  1110. * The N, C and D dimensions must be 1. Has the same format as "out_backprop".
  1111. *@par Outputs:
  1112. * y: A Tensor. Has the same type and data format as "out_backprop".
  1113. *@par Third-party framework compatibility
  1114. * Compatible with Tensorflow's conv3d_backprop_input
  1115. *@par Restrictions:
  1116. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DBackpropInput instead.
  1117. */
  1118. REG_OP(Conv3DBackpropInputD)
  1119. .INPUT(filter, TensorType({DT_FLOAT16}))
  1120. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  1121. .OUTPUT(y, TensorType({DT_FLOAT16}))
  1122. .REQUIRED_ATTR(input_size, ListInt)
  1123. .REQUIRED_ATTR(strides, ListInt)
  1124. .REQUIRED_ATTR(pads, ListInt)
  1125. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1126. .ATTR(groups, Int, 1)
  1127. .ATTR(data_format, String, "NDHWC")
  1128. .OP_END_FACTORY_REG(Conv3DBackpropInputD)
  1129. /**
  1130. *@brief Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence . \n
  1131. *@par Inputs:
  1132. * @li x: A Tensor dtype of float16.
  1133. * @li cont: A Tensor dtype of float16, float32.
  1134. * @li w_x: A Tensor dtype of float16.
  1135. * @li bias: A Tensor dtype of int16, int32, float16, float32.
  1136. * @li w_h: A Tensor dtype of float16.
  1137. * @li x_static: A optinal Tensor dtype of float16.
  1138. * @li h_0: A optinal Tensor dtype of float16, float32.
  1139. * @li c_0: A optinal Tensor dtype of float16, float32.
  1140. * @li w_x_static: A optinal Tensor dtype of float16 . \n
  1141. *@par Attributes:
  1142. *@li num_output: A Scalar of output size dtype of int.
  1143. *@li expose_hidden: A Scalar(bool) of features hidden . \n
  1144. *@par Outputs:
  1145. *@li h: A Tensor dtype of float16, float32.
  1146. * @li h_t: A optinal Tensor dtype of float16, float32. The hidden state at time t.
  1147. * @li c_t: A optinal Tensor dtype of float16, float32. The cell state at time t . \n
  1148. *@par Third-party framework compatibility:
  1149. * Compatible with the Caffe operator LSTM.
  1150. */
  1151. REG_OP(LSTM)
  1152. .INPUT(x, TensorType({DT_FLOAT16}))
  1153. .INPUT(cont, TensorType({DT_FLOAT32,DT_FLOAT16}))
  1154. .INPUT(w_x, TensorType({DT_FLOAT16}))
  1155. .INPUT(bias, TensorType({DT_FLOAT16,DT_FLOAT32,DT_INT16,DT_INT32}))
  1156. .INPUT(w_h, TensorType({DT_FLOAT16}))
  1157. .OPTIONAL_INPUT(x_static, TensorType({DT_FLOAT16}))
  1158. .OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16,DT_FLOAT32}))
  1159. .OPTIONAL_INPUT(c_0, TensorType({DT_FLOAT16,DT_FLOAT32}))
  1160. .OPTIONAL_INPUT(w_x_static, TensorType({DT_FLOAT16}))
  1161. .OUTPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
  1162. .OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
  1163. .OUTPUT(c_t, TensorType({DT_FLOAT16, DT_FLOAT}))
  1164. .ATTR(num_output, Int, 0)
  1165. .ATTR(expose_hidden, Bool, false)
  1166. .OP_END_FACTORY_REG(LSTM)
  1167. /**
  1168. *@brief Computes the gradients of convolution3D with respect to the filter
  1169. *@par Inputs:
  1170. * Three inputs:
  1171. * @li x: A Tensor. Must be one of the following types: float16, float32.
  1172. * Currently does not support double.
  1173. * 5-D with shape [batch, in_depth, in_height, in_width, in_channels]
  1174. * or [batch, in_channels, in_depth, in_height, in_width].
  1175. * @li filter_size: A Tensor of type int32. An integer vector representing the
  1176. * tensor shape of filter, where filter is a 5-D tensor
  1177. * [filter_depth, filter_height, filter_width, in_channels, out_channels]
  1178. * [out_channels, in_channels, filter_depth, filter_height, filter_width]
  1179. * or [out_channels, filter_depth, filter_height, filter_width, in_channels].
  1180. * @li out_backprop: A Tensor. Must have the same type as x.
  1181. * 5-D with shape [batch, out_depth, out_height, out_width, out_channels]
  1182. * or [batch, out_channels, out_depth, out_height, out_width].
  1183. * Gradients with respect to the output of the convolution. \n
  1184. *@par Required Attributes:
  1185. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  1186. * window for each dimension of "x". The N and C dimensions must be 1.
  1187. * Has the same format as "x".
  1188. * @li pads: A tuple/list of 6 integers, [front, back, top, bottom, left, right]
  1189. * pads on feature map . \n
  1190. *@par Attributes:
  1191. * Three attributes:
  1192. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  1193. * dimension of input.
  1194. * The N, C and D dimensions must be 1. Has the same format as "x".
  1195. * @li groups: Number of blocked connections from input channels to output
  1196. * channels.
  1197. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1198. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1199. *@par Outputs:
  1200. * y: A Tensor that has the same type as "x"
  1201. * and the format is NDHWC, NCDHW or DHWCN.
  1202. *@par Third-party framework compatibility
  1203. * Compatible with Tensorflow's conv3d_backprop_filter
  1204. */
  1205. REG_OP(Conv3DBackpropFilter)
  1206. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1207. .INPUT(filter_size, TensorType({DT_INT32}))
  1208. .INPUT(out_backprop, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1209. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  1210. .REQUIRED_ATTR(strides, ListInt)
  1211. .REQUIRED_ATTR(pads, ListInt)
  1212. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1213. .ATTR(groups, Int, 1)
  1214. .ATTR(data_format, String, "NDHWC")
  1215. .OP_END_FACTORY_REG(Conv3DBackpropFilter)
  1216. /**
  1217. *@brief Computes the gradients of convolution with respect to the filter.
  1218. *@par Inputs:
  1219. * Two inputs:
  1220. * @li x: A Tensor of type float16.
  1221. * 5-D with shape [batch, in_depth, in_height, in_width, in_channels]
  1222. * or [batch, in_channels, in_depth, in_height, in_width].
  1223. * @li out_backprop: A Tensor. Must have the same type as x.
  1224. * 5-D with shape [batch, out_depth, out_height, out_width, out_channels]
  1225. * or [batch, out_channels, out_depth, out_height, out_width].
  1226. * Gradients with respect to the output of the convolution. \n
  1227. *@par Required Attributes:
  1228. * @li filter_size: A tuple/list of type integers. An integer vector
  1229. * representing the tensor shape of filter, where filter is a 5-D tensor
  1230. * [filter_depth, filter_height, filter_width, in_channels, out_channels],
  1231. * [out_channels, filter_depth, filter_height, filter_width, in_channels]
  1232. * or [out_channels, in_channels, filter_depth, filter_height, filter_width].
  1233. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  1234. * window for each dimension of "x".
  1235. * The N and C dimensions must be 1. Has the same format as "x".
  1236. * @li pads: A tuple/list of 6 integers, [front, back, top, bottom, left, right]
  1237. * pads on feature map. \n
  1238. *@par Attributes:
  1239. * Three attributes:
  1240. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  1241. * dimension of input.
  1242. * The N, C and D dimensions must be 1. Has the same format as "x".
  1243. * @li groups: Number of blocked connections from input channels to output
  1244. * channels.
  1245. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1246. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1247. *@par Outputs:
  1248. * y: A Tensor of type float32 and the format is NDHWC, NCDHW or DHWCN.
  1249. *@par Third-party framework compatibility
  1250. * Compatible with Tensorflow's conv3d_backprop_filter
  1251. *@par Restrictions:
  1252. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DBackpropFilter instead.
  1253. */
  1254. REG_OP(Conv3DBackpropFilterD)
  1255. .INPUT(x, TensorType({DT_FLOAT16}))
  1256. .INPUT(out_backprop, TensorType({DT_FLOAT16}))
  1257. .OUTPUT(y, TensorType({DT_FLOAT}))
  1258. .REQUIRED_ATTR(filter_size, ListInt)
  1259. .REQUIRED_ATTR(strides, ListInt)
  1260. .REQUIRED_ATTR(pads, ListInt)
  1261. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1262. .ATTR(groups, Int, 1)
  1263. .ATTR(data_format, String, "NDHWC")
  1264. .OP_END_FACTORY_REG(Conv3DBackpropFilterD)
  1265. /**
  1266. *@brief Computes the transpose of convolution 3d with respect to the input.
  1267. *@par Inputs:
  1268. * Three inputs:
  1269. * @li input_size: A Tensor of type int32. An integer vector representing the
  1270. * shape of input.
  1271. * @li x: A Tensor of type float16, currently does not support int8. The format
  1272. * is NDHWC or NCDHW.
  1273. * @li filter: A Tensor of type float16, currently does not support int8.
  1274. * The format is NDHWC, NCDHW or DHWCN.
  1275. *@par Optional input:
  1276. * Two optional inputs
  1277. * @li bias: An optional 1D tensor of the same type as "x". Reserved.
  1278. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  1279. *@par Required Attributes:
  1280. * @li strides: A tuple/list of 5 integers. Specifies the stride of the sliding
  1281. * window for each dimension of "x".
  1282. * The N and C dimensions must be 1. Has the same format as "x".
  1283. * @li pads: A tuple/list of 6 integers
  1284. *@par Attributes:
  1285. * Five attributes:
  1286. * @li groups: Number of blocked connections from input channels to output
  1287. * channels.
  1288. * @li dilations: A tuple/list of 5 integers,
  1289. * The dilation factor for each dimension of input.
  1290. * The N, C and D dimensions must be 1. Has the same format as "x".
  1291. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1292. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1293. * @li output_padding: The size will be added in the output shape.
  1294. * @li offset_x: Input offset_x value. Reserved.
  1295. *@par Outputs:
  1296. * y: A Tensor. Has the same type and format as "x".
  1297. */
  1298. REG_OP(Conv3DTranspose)
  1299. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  1300. .INPUT(x, TensorType({DT_FLOAT16}))
  1301. .INPUT(filter, TensorType({DT_FLOAT16}))
  1302. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  1303. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1304. .OUTPUT(y, TensorType({DT_FLOAT16}))
  1305. .REQUIRED_ATTR(strides, ListInt)
  1306. .REQUIRED_ATTR(pads, ListInt)
  1307. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1308. .ATTR(groups, Int, 1)
  1309. .ATTR(data_format, String, "NDHWC")
  1310. .ATTR(output_padding, ListInt, {0, 0, 0, 0, 0})
  1311. .ATTR(offset_x, Int, 0)
  1312. .OP_END_FACTORY_REG(Conv3DTranspose)
  1313. /**
  1314. *@brief Computes the transpose of convolution 3d with respect to the input.
  1315. *@par Inputs:
  1316. * @li x: A Tensor of type float16, currently does not support int8.
  1317. * The format is NDHWC or NCDHW.
  1318. * @li filter: A Tensor of type float16, currently does not support int8.
  1319. * The format is NDHWC, NCDHW or DHWCN.
  1320. *@par Optional inputs:
  1321. * @li bias: An optional 1D tensor of the same type as "x". Reserved.
  1322. * @li offset_w: An optional 1D tensor for quantized deconvolution. Reserved . \n
  1323. *@par Required Attributes:
  1324. * @li input_size: A tuple/list of type int32.
  1325. * An integer vector representing the shape of input
  1326. * @li strides: A tuple/list of 5 integers.
  1327. * Specifies the stride of the sliding window for each dimension of "x".
  1328. * The N and C dimensions must be 1. Has the same format as "x".
  1329. * @li pads: A tuple/list of 6 integers . \n
  1330. *@par Attributes:
  1331. * Five attributes:
  1332. * @li dilations: A tuple/list of 5 integers, The dilation factor for each
  1333. * dimension of input.
  1334. * The N, C and D dimensions must be 1. Has the same format as "x".
  1335. * @li groups: Number of blocked connections from input channels to output
  1336. * channels.
  1337. * @li data_format: An optional string from: "NDHWC", "NCDHW".
  1338. * Defaults to "NDHWC". Specify the data format of the input and output data.
  1339. * @li output_padding: The size will be added in the output shape.
  1340. * @li offset_x: Input offset_x value. Reserved.
  1341. *@par Outputs:
  1342. * y: A Tensor. Has the same type and format as "x".
  1343. *@par Restrictions:
  1344. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv3DTranspose instead.
  1345. */
  1346. REG_OP(Conv3DTransposeD)
  1347. .INPUT(x, TensorType({DT_FLOAT16}))
  1348. .INPUT(filter, TensorType({DT_FLOAT16}))
  1349. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16}))
  1350. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1351. .OUTPUT(y, TensorType({DT_FLOAT16}))
  1352. .REQUIRED_ATTR(input_size, ListInt)
  1353. .REQUIRED_ATTR(strides, ListInt)
  1354. .REQUIRED_ATTR(pads, ListInt)
  1355. .ATTR(dilations, ListInt, {1, 1, 1, 1, 1})
  1356. .ATTR(groups, Int, 1)
  1357. .ATTR(data_format, String, "NDHWC")
  1358. .ATTR(output_padding, ListInt, {0, 0, 0, 0, 0})
  1359. .ATTR(offset_x, Int, 0)
  1360. .OP_END_FACTORY_REG(Conv3DTransposeD)
  1361. /**
  1362. *@brief Computes the transpose of convolution 2d with respect to the input.
  1363. *@par Inputs:
  1364. * Five inputs:
  1365. * @li input_size: A Tensor of type int32 or int64. An integer vector
  1366. * representing the shape of input, where input is a 4-D tensor
  1367. * [batch, height, width, channels] or [batch, channels, height, width].
  1368. * @li x: A Tensor of type float16, int8. 4-D with shape [batch, out_height,
  1369. * out_width, out_channels] or [batch, out_channels, out_height, out_width].
  1370. * @li filter: A Tensor of type float16, int8. Must have the same type as "x".
  1371. * 4-D with shape [filter_height, filter_width, in_channels, out_channels]
  1372. * or [out_channels, filter_height, filter_width, in_channels]
  1373. * or [out_channels, in_channel, filter_height, filter_width].
  1374. * @li bias: An optional 1D tensor of type float16 or int32. Format is "ND".
  1375. * @li offset_w: An optional 1D tensor for quantized inference. Reserved.
  1376. *\n
  1377. *\n
  1378. * The following are the supported data types and data formats:
  1379. *@verbatim
  1380. | Tensor | x | filter | bias | y
  1381. ------------|---------|---------|---------|--------
  1382. | Data Type | float16 | float16 | float16 | float16
  1383. | |---------|---------|---------|--------
  1384. | | int8 | int8 | int32 | int32
  1385. ------------|---------|---------|---------|--------
  1386. | Format | NCHW | NCHW | ND | NCHW
  1387. | | NHWC | HWCN | | NHWC
  1388. @endverbatim
  1389. * For int8, a dequant or requant operator must be followed.
  1390. *\n
  1391. *
  1392. *@par Required Attributes:
  1393. * @li strides: A required tuple/list of 4 integers. The stride of the sliding
  1394. * window for H/W dimension. The index of H/W is same as data_format.
  1395. * @li pads: A required tuple/list of 4 integers, [top, bottom, left, right]
  1396. * pads on feature map.
  1397. *@par Attributes:
  1398. * Five attributes:
  1399. * @li groups: Number of blocked connections from input channels to output
  1400. * channels.
  1401. * Defaults to "1".
  1402. * @li dilations: A tuple/list of 4 integers, The dilation factor for each
  1403. * dimension of input. Must be [1, 1, 1, 1].
  1404. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
  1405. * Specify the data format of the input and output data.
  1406. * @li output_padding: The size will be added in the output shape. Defaults
  1407. * to [0, 0, 0, 0].
  1408. * @li offset_x: An optional int. Input offset, used for quantized inference.
  1409. * The negative offset added to the input image for int8 type. Ensure offset_x
  1410. * within the effective range of int8 [-128, 127]. Defaults to "0".
  1411. *\n
  1412. *\n
  1413. * The following value range restrictions must be met:
  1414. *@verbatim
  1415. | Name | Field | Scope
  1416. -------------------|----------|--------------
  1417. | input_size | H | [1, 4096]
  1418. | | W | [1, 4096]
  1419. -------------------|----------|--------------
  1420. | x (out_backprop) | H*strideH| [1, 4096]
  1421. | | W*strideW| [1, 4096]
  1422. -------------------|----------|--------------
  1423. | filter | H | [1, 255]
  1424. | | W | [1, 255]
  1425. -------------------|----------|--------------
  1426. | y (fmap) | H | [1, 4096]
  1427. | | W | [1, 4096]
  1428. -------------------|----------|--------------
  1429. | Stride | H | [1, 63]
  1430. | | W | [1, 63]
  1431. -------------------|----------|--------------
  1432. | Padding | Top | [0, 255]
  1433. | | Bottom | [0, 255]
  1434. | | Left | [0, 255]
  1435. | | Right | [0, 255]
  1436. -------------------|----------|--------------
  1437. | Dilation | H | [1, 255]
  1438. | | W | [1, 255]
  1439. -------------------|----------|--------------
  1440. | Offset_x | | [-128, 127]
  1441. @endverbatim
  1442. * In Ascend910, fmap or out_backprop's H and W not support 1 when
  1443. * fmap_h + pad_top + pad_bottom != (filter_height - 1) * dilation_h + 1
  1444. * If filter_h = 1 and filter_w = 1, out_backprop_w * stride_h * stride_w < 4096
  1445. *\n
  1446. *
  1447. *@par Outputs:
  1448. * y: A Tensor. A Tensor of type float16 or int32, and has same format as
  1449. * input_size.
  1450. *\n
  1451. * out_backprop_height = (fmap_height + pad_top + pad_bottom -
  1452. * (dilation_h * (filter_height - 1) + 1))
  1453. * / stride_h + 1
  1454. *\n
  1455. * out_backprop_width = (fmap_width + pad_left + pad_right -
  1456. * (dilation_w * (filter_width - 1) + 1))
  1457. * / stride_w + 1
  1458. *\n
  1459. *
  1460. */
  1461. REG_OP(Conv2DTranspose)
  1462. .INPUT(input_size, TensorType({DT_INT32, DT_INT64}))
  1463. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  1464. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  1465. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  1466. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1467. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  1468. .REQUIRED_ATTR(strides, ListInt)
  1469. .REQUIRED_ATTR(pads, ListInt)
  1470. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1471. .ATTR(groups, Int, 1)
  1472. .ATTR(data_format, String, "NHWC")
  1473. .ATTR(output_padding, ListInt, {0, 0, 0, 0})
  1474. .ATTR(offset_x, Int, 0)
  1475. .OP_END_FACTORY_REG(Conv2DTranspose)
  1476. /**
  1477. *@brief Computes the transpose of convolution 2d with respect to the input.
  1478. *@par Inputs:
  1479. * Four inputs:
  1480. * @li x: A Tensor of type float16, int8.
  1481. * @li filter: A Tensor of type float16, int8. Must have the same type as "x".
  1482. * @li bias: An optional 1D tensor of the same type as "x".
  1483. * @li offset_w: An optional 1D tensor for quantized inference. Type is int8. Reserved.
  1484. *@par Required Attributes:
  1485. * @li input_size: A Tensor of type int32 or int64. An integer vector representing the
  1486. * shape of input.
  1487. * @li strides: A required list or tuple. The stride of the sliding window for
  1488. * height and width for H/W dimension.
  1489. * @li pads: A required list or tuple of int32. Padding added to each dimension
  1490. * of the input.
  1491. *@par Attributes:
  1492. * Five attributes:
  1493. * @li groups: Number of blocked connections from input channels to output channels.
  1494. * Defaults to "1".
  1495. * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension
  1496. * of input. Must be [1, 1, 1, 1].
  1497. * @li data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
  1498. * Specify the data format of the input and output data.
  1499. * @li output_padding: The size will be added in the output shape. Defaults
  1500. * to [0, 0, 0, 0].
  1501. * @li offset_x: An optional int. Input offset, used for quantized inference.
  1502. * Defaults to "0".
  1503. *@par Outputs:
  1504. * y: A Tensor. Has the same type as "filter".
  1505. *@par Restrictions:
  1506. * Warning: THIS FUNCTION IS DEPRECATED. Please use Conv2DTranspose instead.
  1507. */
  1508. REG_OP(Conv2DTransposeD)
  1509. .INPUT(x, TensorType({DT_FLOAT16, DT_INT8}))
  1510. .INPUT(filter, TensorType({DT_FLOAT16, DT_INT8}))
  1511. .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT16, DT_INT32}))
  1512. .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
  1513. .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32}))
  1514. .REQUIRED_ATTR(input_size, ListInt)
  1515. .REQUIRED_ATTR(strides, ListInt)
  1516. .REQUIRED_ATTR(pads, ListInt)
  1517. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1518. .ATTR(groups, Int, 1)
  1519. .ATTR(data_format, String, "NHWC")
  1520. .ATTR(output_padding, ListInt, {0, 0, 0, 0})
  1521. .ATTR(offset_x, Int, 0)
  1522. .OP_END_FACTORY_REG(Conv2DTransposeD)
  1523. /**
  1524. *@brief Computes the deformed convolution output with the expected input
  1525. *@par Inputs:
  1526. * Two inputs:
  1527. * @li x: A Tensor of type float16,float32
  1528. * @li offsets: A Tensor of type float16,float32.Deformation offset parameter.
  1529. *@par Required Attributes:
  1530. * @li strides: A tuple/list of 4 integers.The stride of the sliding window for
  1531. * height and width for H/W dimension.
  1532. * @li pads: A tuple/list of 4 integers.Padding added to H/W dimension
  1533. * of the input.
  1534. * @li ksize: A tuple/list of 2 integers.kernel size.
  1535. *@par Attributes:
  1536. * Four attributes:
  1537. * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension
  1538. * of input. Defaults to [1, 1, 1, 1]
  1539. * @li data_format: An optional string from: "NCHW", "NHWC". Defaults to "NCHW". Specify the data format of the input x.
  1540. * @li deformable_groups: Specify the c-axis grouping number of input x.
  1541. * @li modulated: Specify version of DeformableConv2D, true means v2, false means v1
  1542. *@par Outputs:
  1543. * y: A Tensor. A Tensor of type float16, float32.
  1544. */
  1545. REG_OP(DeformableOffsets)
  1546. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  1547. .INPUT(offsets, TensorType({DT_FLOAT16, DT_FLOAT}))
  1548. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  1549. .REQUIRED_ATTR(strides, ListInt)
  1550. .REQUIRED_ATTR(pads, ListInt)
  1551. .REQUIRED_ATTR(ksize, ListInt)
  1552. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1553. .ATTR(data_format, String, "NCHW")
  1554. .ATTR(deformable_groups, Int, 1)
  1555. .ATTR(modulated, Bool, true)
  1556. .OP_END_FACTORY_REG(DeformableOffsets)
  1557. /**
  1558. *@brief Computes the gradients of DeformableOffsets with respect to input and offsets
  1559. *@par Inputs:
  1560. * Three inputs:
  1561. * @li grad: A Tensor of type float16,float32. gradients with respect to DeformableOffsets output
  1562. * @li x: A Tensor of type float16,float32.
  1563. * @li offsets: A Tensor of type float16,float32.Deformation offset parameter.
  1564. *@par Required Attributes:
  1565. * @li strides: A tuple/list of 4 integers.The stride of the sliding window for
  1566. * height and width for H/W dimension.
  1567. * @li pads: A tuple/list of 4 integers.Padding added to H/W dimension
  1568. * of the input.
  1569. * @li ksize: A tuple/list of 2 integers.kernel size.
  1570. *@par Attributes:
  1571. * Three attributes:
  1572. * @li dilations: A tuple/list of 4 integers, The dilation factor for each dimension
  1573. * of input. Defaults to [1, 1, 1, 1]
  1574. * @li data_format: An optional string from: "NCHW", "NHWC". Defaults to "NCHW". Specify the data format of the input x.
  1575. * @li deformable_groups: Specify the c-axis grouping number of input x.
  1576. * @li modulated: Specify version of DeformableConv2D, true means v2, false means v1.
  1577. *@par Outputs:
  1578. * grad_x: A Tensor of type float16, float32. Gradients with respect to input_x
  1579. * grad_offsets: A Tensor of type float16, float32. Gradients with respect to input_offsets
  1580. */
  1581. REG_OP(DeformableOffsetsGrad)
  1582. .INPUT(grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  1583. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  1584. .INPUT(offsets, TensorType({DT_FLOAT16, DT_FLOAT}))
  1585. .OUTPUT(grad_x, TensorType({DT_FLOAT16, DT_FLOAT}))
  1586. .OUTPUT(grad_offsets, TensorType({DT_FLOAT16, DT_FLOAT}))
  1587. .REQUIRED_ATTR(strides, ListInt)
  1588. .REQUIRED_ATTR(pads, ListInt)
  1589. .REQUIRED_ATTR(ksize, ListInt)
  1590. .ATTR(dilations, ListInt, {1, 1, 1, 1})
  1591. .ATTR(data_format, String, "NCHW")
  1592. .ATTR(deformable_groups, Int, 1)
  1593. .ATTR(modulated, Bool, true)
  1594. .OP_END_FACTORY_REG(DeformableOffsetsGrad)
  1595. /**
  1596. *@brief Computes the deformed dilation output with the expected input
  1597. *@par Inputs:
  1598. * One inputs:
  1599. * @li x: A Tensor of type int8, float16, float32
  1600. *@par Required Attributes:
  1601. * @li dilations: A tuple/list of integers.
  1602. *@par Attributes:
  1603. * Two attributes:
  1604. * @li padding_value: default value filling in blank
  1605. * @li pads: A tuple/list of integers.
  1606. *@par Outputs:
  1607. * y: A Tensor. A Tensor of type int8, float16, float32.
  1608. */
  1609. REG_OP(Dilation)
  1610. .INPUT(x, TensorType({DT_INT8, DT_FLOAT16, DT_FLOAT}))
  1611. .OUTPUT(y, TensorType({DT_INT8, DT_FLOAT16, DT_FLOAT}))
  1612. .REQUIRED_ATTR(dilations, ListInt)
  1613. .ATTR(pads, ListInt, {})
  1614. .ATTR(padding_value, Float, 0.0)
  1615. .OP_END_FACTORY_REG(Dilation)
  1616. } // namespace ge
  1617. #endif // OPS_BUILT_IN_OP_PROTO_INC_NN_CALCULATION_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示