You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node_executor.cc 9.5 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/node_executor/node_executor.h"
  17. #include "framework/common/debug/log.h"
  18. #include "common/math/math_util.h"
  19. #include "graph/utils/node_utils.h"
  20. #include "init/gelib.h"
  21. #include "graph/utils/tensor_utils.h"
  22. #include "hybrid/model/hybrid_model.h"
  23. #include "graph/debug/ge_attr_define.h"
  24. #include "opskernel_manager/ops_kernel_builder_manager.h"
  25. namespace ge {
  26. namespace hybrid {
  27. namespace {
  28. const char *const kEngineNameAiCore = "AIcoreEngine";
  29. const char *const kEngineNameGeLocal = "DNN_VM_GE_LOCAL_OP_STORE";
  30. const char *const kEngineNameAiCpu = "aicpu_ascend_kernel";
  31. const char *const kEngineNameAiCpuTf = "aicpu_tf_kernel";
  32. const char *const kEngineNameHccl = "ops_kernel_info_hccl";
  33. const char *const kEngineNameRts = "DNN_VM_RTS_OP_STORE";
  34. const char *const kEngineNameHostCpu = "DNN_VM_HOST_CPU_OP_STORE";
  35. const char *const kOwnerGraphIsUnknown = "OwnerGraphIsUnknown";
  36. }
  37. Status NodeExecutor::PrepareTask(NodeTask &task, TaskContext &context) const {
  38. GE_CHK_STATUS_RET_NOLOG(context.AllocateOutputs());
  39. GE_CHK_STATUS_RET_NOLOG(task.UpdateTilingData(context)); // update op_desc before alloc ws
  40. GE_CHK_STATUS_RET_NOLOG(context.AllocateWorkspaces());
  41. GE_CHK_STATUS_RET_NOLOG(task.UpdateArgs(context));
  42. return SUCCESS;
  43. }
  44. Status NodeExecutor::ExecuteTask(NodeTask &task, TaskContext &context, const std::function<void()> &callback) const {
  45. GE_CHK_STATUS_RET(task.ExecuteAsync(context, callback),
  46. "Failed to execute task. node = %s",
  47. context.GetNodeItem().NodeName().c_str());
  48. return SUCCESS;
  49. }
  50. Status NodeExecutor::LoadTask(const HybridModel &model, const NodePtr &node, shared_ptr<NodeTask> &task) const {
  51. return UNSUPPORTED;
  52. }
  53. Status NodeExecutor::CompileTask(const HybridModel &model, const NodePtr &node, shared_ptr<NodeTask> &task) const {
  54. return UNSUPPORTED;
  55. }
  56. Status NodeExecutorManager::EnsureInitialized() {
  57. GE_CHK_STATUS_RET(InitializeExecutors());
  58. std::lock_guard<std::mutex> lk(mu_);
  59. if (initialized_) {
  60. return SUCCESS;
  61. }
  62. engine_mapping_.emplace(kEngineNameAiCore, NodeExecutorManager::ExecutorType::AICORE);
  63. engine_mapping_.emplace(kEngineNameGeLocal, NodeExecutorManager::ExecutorType::GE_LOCAL);
  64. engine_mapping_.emplace(kEngineNameAiCpuTf, NodeExecutorManager::ExecutorType::AICPU_TF);
  65. engine_mapping_.emplace(kEngineNameAiCpu, NodeExecutorManager::ExecutorType::AICPU_TF);
  66. engine_mapping_.emplace(kEngineNameHccl, NodeExecutorManager::ExecutorType::HCCL);
  67. engine_mapping_.emplace(kEngineNameRts, NodeExecutorManager::ExecutorType::RTS);
  68. engine_mapping_.emplace(kEngineNameHostCpu, NodeExecutorManager::ExecutorType::HOST_CPU);
  69. initialized_ = true;
  70. GELOGI("Initializing NodeExecutors successfully");
  71. return SUCCESS;
  72. }
  73. NodeExecutorManager::ExecutorType NodeExecutorManager::ResolveExecutorType(Node &node) const {
  74. auto op_type = node.GetType();
  75. if (op_type == PARTITIONEDCALL) {
  76. const auto &subgraph = NodeUtils::GetSubgraph(node, 0);
  77. if (subgraph != nullptr && subgraph->GetGraphUnknownFlag()) {
  78. return ExecutorType::DYNAMIC_SUBGRAPH;
  79. }
  80. bool is_dynamic = false;
  81. (void)NodeUtils::GetNodeUnknownShapeStatus(node, is_dynamic);
  82. if (is_dynamic) {
  83. return ExecutorType::DYNAMIC_SUBGRAPH;
  84. }
  85. return ExecutorType::COMPILED_SUBGRAPH;
  86. }
  87. // rts kernel store is assigned to NetOutput
  88. if (op_type == NETOUTPUT || op_type == VARIABLE) {
  89. return ExecutorType::GE_LOCAL;
  90. }
  91. if (IsControlOp(op_type)) {
  92. return ExecutorType::CONTROL_OP;
  93. }
  94. auto op_desc = node.GetOpDesc(); // checked before
  95. const auto &lib_name = op_desc->GetOpKernelLibName();
  96. auto it = engine_mapping_.find(lib_name);
  97. if (it == engine_mapping_.end()) {
  98. GELOGE(UNSUPPORTED, "KernelLib not supported. node = %s, lib_name = %s", node.GetName().c_str(), lib_name.c_str());
  99. return ExecutorType::RESERVED;
  100. }
  101. return it->second;
  102. }
  103. Status NodeExecutorManager::GetExecutor(Node &node, const NodeExecutor **executor) const {
  104. auto executor_type = ResolveExecutorType(node);
  105. const auto it = executors_.find(executor_type);
  106. if (it == executors_.end()) {
  107. GELOGE(INTERNAL_ERROR, "Failed to get executor by type: %d.", executor_type);
  108. return INTERNAL_ERROR;
  109. }
  110. GELOGD("[%s] Set node executor by type: %d.", node.GetName().c_str(), executor_type);
  111. *executor = it->second.get();
  112. return SUCCESS;
  113. }
  114. void NodeExecutorManager::RegisterExecutorBuilder(NodeExecutorManager::ExecutorType executor_type,
  115. const std::function<NodeExecutor *()> &builder) {
  116. builders_.emplace(executor_type, builder);
  117. }
  118. Status NodeExecutorManager::CalcOpRunningParam(Node &node) const {
  119. auto op_desc = node.GetOpDesc();
  120. GE_CHECK_NOTNULL(op_desc);
  121. if (op_desc->GetType() == PARTITIONEDCALL) {
  122. GELOGD("[%s] Skipping CalcOpRunningParam for PartitionedCall.", node.GetName().c_str());
  123. return SUCCESS;
  124. }
  125. for (size_t i = 0; i < op_desc->GetOutputsSize(); ++i) {
  126. GeTensorDescPtr output_tensor = op_desc->MutableOutputDesc(static_cast<uint32_t>(i));
  127. GE_CHECK_NOTNULL(output_tensor);
  128. TensorUtils::SetSize(*(output_tensor.get()), 0);
  129. }
  130. // calc hccl output size independent, hccl ops kernel manager should GetSize for
  131. // input which is the output size of input-op, but sometimes return error
  132. // when multi-thread
  133. if (op_desc->GetOpKernelLibName() == kEngineNameHccl) {
  134. for (size_t i = 0; i < op_desc->GetOutputsSize(); ++i) {
  135. GeTensorDesc output_tensor = op_desc->GetOutputDesc(static_cast<uint32_t>(i));
  136. Format format = output_tensor.GetFormat();
  137. DataType data_type = output_tensor.GetDataType();
  138. GeShape output_shape = output_tensor.GetShape();
  139. int64_t output_mem_size = 0;
  140. GE_CHK_STATUS_RET(TensorUtils::CalcTensorMemSize(output_shape, format, data_type, output_mem_size),
  141. "hccl calc tensor mem size failed.");
  142. GE_CHK_STATUS_RET(CheckInt64AddOverflow(output_mem_size, MEMORY_ALIGN_RATIO * MEMORY_ALIGN_SIZE - 1),
  143. "[%s] Invalid output mem size: %ld",
  144. node.GetName().c_str(),
  145. output_mem_size);
  146. output_mem_size = ((output_mem_size +
  147. MEMORY_ALIGN_RATIO * MEMORY_ALIGN_SIZE - 1) / MEMORY_ALIGN_SIZE) * MEMORY_ALIGN_SIZE;
  148. TensorUtils::SetSize(output_tensor, output_mem_size);
  149. GE_CHK_STATUS_RET(op_desc->UpdateOutputDesc(static_cast<uint32_t>(i), output_tensor),
  150. "hccl update output size failed.");
  151. GELOGD("%s output desc[%u], dim_size: %zu, mem_size: %ld.", node.GetName().c_str(), i,
  152. output_tensor.GetShape().GetDimNum(), output_mem_size);
  153. }
  154. return SUCCESS;
  155. }
  156. return OpsKernelBuilderManager::Instance().CalcOpRunningParam(node);
  157. }
  158. Status NodeExecutorManager::InitializeExecutors() {
  159. std::lock_guard<std::mutex> lk(mu_);
  160. if (executor_initialized_) {
  161. ++ref_count_;
  162. GELOGI("Executor is already initialized. add ref count to [%d]", ref_count_);
  163. return SUCCESS;
  164. }
  165. GELOGI("Start to Initialize NodeExecutors");
  166. for (auto &it : builders_) {
  167. auto engine_type = it.first;
  168. auto build_fn = it.second;
  169. GE_CHECK_NOTNULL(build_fn);
  170. auto executor = std::unique_ptr<NodeExecutor>(build_fn());
  171. if (executor == nullptr) {
  172. GELOGE(INTERNAL_ERROR, "Failed to create executor for engine type = %d", engine_type);
  173. return INTERNAL_ERROR;
  174. }
  175. GELOGD("Executor of engine type = %d was created successfully", engine_type);
  176. auto ret = executor->Initialize();
  177. if (ret != SUCCESS) {
  178. GELOGE(ret, "Failed to initialize NodeExecutor of type = %d, clear executors", engine_type);
  179. for (auto &executor_it : executors_) {
  180. executor_it.second->Finalize();
  181. }
  182. executors_.clear();
  183. return ret;
  184. }
  185. executors_.emplace(engine_type, std::move(executor));
  186. }
  187. ++ref_count_;
  188. executor_initialized_ = true;
  189. GELOGI("Initializing NodeExecutors successfully.");
  190. return SUCCESS;
  191. }
  192. void NodeExecutorManager::FinalizeExecutors() {
  193. std::lock_guard<std::mutex> lk(mu_);
  194. if (!executor_initialized_) {
  195. GELOGD("No need for finalizing for not initialized.");
  196. return;
  197. }
  198. if (--ref_count_ > 0) {
  199. GELOGD("Ref count = %d, do not finalize executors.", ref_count_);
  200. return;
  201. }
  202. GELOGD("Start to invoke Finalize on executors.");
  203. for (auto &it : executors_) {
  204. it.second->Finalize();
  205. }
  206. executors_.clear();
  207. executor_initialized_ = false;
  208. GELOGD("Done invoking Finalize successfully.");
  209. }
  210. NodeExecutorRegistrar::NodeExecutorRegistrar(NodeExecutorManager::ExecutorType executor_type,
  211. NodeExecutor *(*builder)()) {
  212. NodeExecutorManager::GetInstance().RegisterExecutorBuilder(executor_type, builder);
  213. }
  214. } // namespace hybrid
  215. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示