You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

memcpy_addr_async_unittest.cc 1.4 kB

4 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <cstdint>
  18. #include <memory>
  19. #include <string>
  20. #define private public
  21. #include "graph/passes/memcpy_addr_async_pass.h"
  22. #include "common/ge_inner_error_codes.h"
  23. #include "inc/pass_manager.h"
  24. #undef private
  25. namespace ge {
  26. class UtestMemcpyAddrAsyncPass : public testing::Test {
  27. protected:
  28. void SetUp() {}
  29. void TearDown() {}
  30. };
  31. TEST_F(UtestMemcpyAddrAsyncPass, run) {
  32. ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>("default");
  33. ge::OpDescPtr op = std::make_shared<ge::OpDesc>();
  34. op->SetType(STREAMSWITCH);
  35. op->SetName("stream_switch");
  36. op->AddOutputDesc(ge::GeTensorDesc());
  37. ge::NodePtr node = graph->AddNode(op);
  38. graph->SetGraphUnknownFlag(true);
  39. MemcpyAddrAsyncPass pass;
  40. Status ret = pass.Run(graph);
  41. EXPECT_EQ(ret, SUCCESS);
  42. }
  43. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示