You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

op_task.h 11 kB

5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
3 years ago
3 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_SINGLE_OP_TASK_OP_TASK_H_
  17. #define GE_SINGLE_OP_TASK_OP_TASK_H_
  18. #include <memory>
  19. #include <string>
  20. #include <external/graph/tensor.h>
  21. #include "common/dump/dump_op.h"
  22. #include "common/dump/dump_properties.h"
  23. #include "framework/common/ge_inner_error_codes.h"
  24. #include "graph/op_kernel_bin.h"
  25. #include "runtime/stream.h"
  26. #include "graph/node.h"
  27. #include "cce/aicpu_engine_struct.h"
  28. #include "hybrid/node_executor/aicpu/aicpu_ext_info.h"
  29. #include "init/gelib.h"
  30. #include "register/op_tiling.h"
  31. namespace ge {
  32. namespace {
  33. const int kAddressNum = 2;
  34. } // namespace
  35. class StreamResource;
  36. struct SingleOpModelParam;
  37. class OpTask {
  38. public:
  39. OpTask() = default;
  40. virtual ~OpTask() = default;
  41. virtual Status LaunchKernel(rtStream_t stream) = 0;
  42. virtual Status UpdateRunInfo();
  43. virtual Status UpdateArgTable(const SingleOpModelParam &param);
  44. void SetModelArgs(std::string model_name, uint32_t model_id);
  45. Status GetProfilingArgs(TaskDescInfo &task_desc_info, uint32_t &model_id);
  46. const std::string &GetTaskName() const {return task_name_;}
  47. void SetOpDesc(const OpDescPtr &op_desc) {
  48. op_desc_ = op_desc;
  49. }
  50. const OpDescPtr &GetOpdesc() const {return op_desc_;}
  51. Status OpenDump(rtStream_t stream);
  52. virtual void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) = 0;
  53. virtual Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  54. const std::vector<DataBuffer> &input_buffers,
  55. std::vector<GeTensorDesc> &output_desc,
  56. std::vector<DataBuffer> &output_buffers,
  57. rtStream_t stream);
  58. virtual const std::string &GetTaskType() const;
  59. protected:
  60. Status DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace);
  61. DumpProperties dump_properties_;
  62. DumpOp dump_op_;
  63. OpDescPtr op_desc_;
  64. std::string model_name_;
  65. uint32_t model_id_ = 0;
  66. uint32_t block_dim_ = 1;
  67. std::string task_name_;
  68. };
  69. class TbeOpTask : public OpTask {
  70. public:
  71. ~TbeOpTask() override;
  72. Status LaunchKernel(rtStream_t stream) override;
  73. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  74. const std::vector<DataBuffer> &input_buffers,
  75. std::vector<GeTensorDesc> &output_desc,
  76. std::vector<DataBuffer> &output_buffers,
  77. rtStream_t stream) override;
  78. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  79. void SetSmDesc(void *sm_desc);
  80. void SetStubFunc(const std::string &name, const void *stub_func);
  81. void SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim, const OpDescPtr &op_desc);
  82. void SetKernelWithHandleArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  83. const OpDescPtr &op_desc, const domi::KernelDefWithHandle& kernel_def_with_handle);
  84. void SetAtomicAddrCleanTask(OpTask *task) { atomic_task_.reset(task); }
  85. Status UpdateRunInfo() override;
  86. Status SetArgIndex();
  87. const void *GetArgs() const;
  88. size_t GetArgSize() const;
  89. const std::string &GetStubName() const;
  90. Status EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, uint32_t max_tiling_size);
  91. const std::string &GetTaskType() const override;
  92. void SetHandle(void *handle);
  93. protected:
  94. NodePtr node_;
  95. std::unique_ptr<uint8_t[]> args_;
  96. size_t arg_size_ = 0;
  97. void *tiling_buffer_ = nullptr;
  98. uint32_t max_tiling_size_ = 0;
  99. std::string tiling_data_;
  100. size_t input_num_; // include const input
  101. size_t output_num_;
  102. private:
  103. friend class SingleOpModel;
  104. friend class TbeTaskBuilder;
  105. static Status UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor);
  106. Status AllocateWorkspaces(const std::vector<int64_t> &workspace_sizes);
  107. Status DoLaunchKernel(rtStream_t stream);
  108. Status CheckAndExecuteAtomic(const vector<GeTensorDesc> &input_desc,
  109. const vector<DataBuffer> &input_buffers,
  110. vector<GeTensorDesc> &output_desc,
  111. vector<DataBuffer> &output_buffers,
  112. rtStream_t stream);
  113. virtual Status UpdateNodeByShape(const vector<GeTensorDesc> &input_desc,
  114. const vector<GeTensorDesc> &output_desc);
  115. virtual Status UpdateTilingArgs(rtStream_t stream);
  116. virtual Status UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs);
  117. virtual Status CalcTilingInfo(optiling::utils::OpRunInfo &run_info);
  118. const void *stub_func_ = nullptr;
  119. void *sm_desc_ = nullptr;
  120. std::string stub_name_;
  121. StreamResource *stream_resource_ = nullptr;
  122. std::vector<int64_t> run_info_workspaces_;
  123. std::vector<void *> workspaces_;
  124. uint32_t tiling_key_ = 0;
  125. bool clear_atomic_ = false;
  126. void* handle_ = nullptr;
  127. std::string original_kernel_key_;
  128. std::string node_info_;
  129. std::vector<size_t> arg_index_; // data index in args
  130. std::unique_ptr<OpTask> atomic_task_;
  131. };
  132. class AtomicAddrCleanOpTask : public TbeOpTask {
  133. public:
  134. Status InitAtomicAddrCleanIndices();
  135. private:
  136. Status UpdateNodeByShape(const vector<GeTensorDesc> &input_desc,
  137. const vector<GeTensorDesc> &output_desc) override;
  138. Status UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs) override;
  139. Status UpdateTilingArgs(rtStream_t stream) override;
  140. Status CalcTilingInfo(optiling::utils::OpRunInfo &run_info) override;
  141. std::vector<int> atomic_output_indices_;
  142. };
  143. class AiCpuBaseTask : public OpTask {
  144. public:
  145. AiCpuBaseTask() = default;
  146. ~AiCpuBaseTask() override;
  147. UnknowShapeOpType GetUnknownType() const { return unknown_type_; }
  148. Status UpdateArgTable(const SingleOpModelParam &param) override;
  149. const std::string &GetTaskType() const override;
  150. protected:
  151. Status UpdateIoAddr(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs);
  152. Status SetInputConst();
  153. Status SetExtInfoAndType(const std::string &kernel_ext_info, uint64_t kernel_id);
  154. Status UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
  155. std::vector<GeTensorDesc> &output_desc,
  156. rtStream_t stream);
  157. Status UpdateOutputShape(vector<GeTensorDesc> &output_desc);
  158. Status UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc);
  159. // for blocking aicpu op
  160. Status DistributeWaitTaskForAicpuBlockingOp(rtStream_t stream);
  161. Status UpdateEventIdForBlockingAicpuOp();
  162. Status CheckDeviceSupportBlockingAicpuOpProcess(bool &is_support);
  163. protected:
  164. size_t num_inputs_ = 0;
  165. size_t num_outputs_ = 0;
  166. UnknowShapeOpType unknown_type_ = DEPEND_IN_SHAPE;
  167. std::unique_ptr<ge::hybrid::AicpuExtInfoHandler> aicpu_ext_handle_;
  168. void *ext_info_addr_dev_ = nullptr;
  169. vector<bool> input_is_const_;
  170. // for blocking aicpu op
  171. bool is_blocking_aicpu_op_ = false;
  172. rtEvent_t rt_event_ = nullptr;
  173. };
  174. class AiCpuTask : public AiCpuBaseTask {
  175. public:
  176. AiCpuTask() = default;
  177. ~AiCpuTask() override;
  178. Status LaunchKernel(rtStream_t stream) override;
  179. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  180. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  181. const std::vector<DataBuffer> &input_buffers,
  182. std::vector<GeTensorDesc> &output_desc,
  183. std::vector<DataBuffer> &output_buffers,
  184. rtStream_t stream) override;
  185. Status SetMemCopyTask(const domi::KernelExDef &kernel_def);
  186. private:
  187. // for copy task.
  188. Status InitForSummaryAndCopy();
  189. Status UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
  190. vector<DataBuffer> &outputs,
  191. rtStream_t stream);
  192. Status ReadResultSummaryAndPrepareMemory();
  193. Status CopyDataToHbm(vector<DataBuffer> &outputs, rtStream_t stream);
  194. Status PrepareCopyInputs(vector<DataBuffer> &outputs);
  195. Status UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc);
  196. friend class AiCpuTaskBuilder;
  197. void *workspace_addr_ = nullptr;
  198. std::string task_info_;
  199. // device addr
  200. void *args_ = nullptr;
  201. size_t arg_size_ = 0;
  202. std::string op_type_;
  203. // device addr
  204. void *io_addr_ = nullptr;
  205. size_t io_addr_size_ = 0;
  206. // host addr
  207. std::vector<void *> io_addr_host_;
  208. // for copy task
  209. void *copy_task_args_buf_ = nullptr;
  210. void *copy_workspace_buf_ = nullptr;
  211. std::vector<void *> output_summary_;
  212. std::vector<aicpu::FWKAdapter::ResultSummary> output_summary_host_;
  213. void *copy_ioaddr_dev_ = nullptr;
  214. void *copy_input_release_flag_dev_ = nullptr;
  215. void *copy_input_data_size_dev_ = nullptr;
  216. void *copy_input_src_dev_ = nullptr;
  217. void *copy_input_dst_dev_ = nullptr;
  218. vector<void *> out_shape_hbm_;
  219. uint64_t kernel_id_ = 0;
  220. };
  221. class AiCpuCCTask : public AiCpuBaseTask {
  222. public:
  223. AiCpuCCTask() = default;
  224. ~AiCpuCCTask() override;
  225. AiCpuCCTask(const AiCpuCCTask &) = delete;
  226. AiCpuCCTask &operator=(const AiCpuCCTask &) = delete;
  227. Status LaunchKernel(rtStream_t stream) override;
  228. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  229. const void *GetArgs() const;
  230. void SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size);
  231. void SetSoName(const std::string &so_name);
  232. void SetkernelName(const std::string &kernel_Name);
  233. void SetIoAddr(uintptr_t *io_addr);
  234. size_t GetArgSize() const;
  235. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  236. const std::vector<DataBuffer> &input_buffers,
  237. std::vector<GeTensorDesc> &output_desc,
  238. std::vector<DataBuffer> &output_buffers,
  239. rtStream_t stream) override;
  240. private:
  241. friend class AiCpuCCTaskBuilder;
  242. std::string so_name_;
  243. std::string kernel_name_;
  244. std::unique_ptr<uint8_t[]> args_;
  245. size_t arg_size_ = 0;
  246. void *sm_desc_ = nullptr;
  247. uintptr_t *io_addr_ = nullptr;
  248. size_t io_addr_num_ = 0;
  249. bool is_custom_ = false;
  250. uint32_t dump_flag_ = RT_KERNEL_DEFAULT;
  251. std::string op_type_;
  252. uint64_t kernel_id_ = 0;
  253. };
  254. class MemcpyAsyncTask : public OpTask {
  255. public:
  256. Status LaunchKernel(rtStream_t stream) override;
  257. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  258. private:
  259. friend class SingleOpModel;
  260. friend class RtsKernelTaskBuilder;
  261. uintptr_t addresses_[kAddressNum] = {0};
  262. size_t dst_max_;
  263. size_t count_;
  264. rtMemcpyKind_t kind_;
  265. NodePtr node_;
  266. };
  267. } // namespace ge
  268. #endif // GE_SINGLE_OP_TASK_OP_TASK_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示