You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_async_executor.h 3.7 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_HYBRID_EXECUTOR_MODEL_HYBRID_MODEL_ASYNC_EXECUTOR_H_
  17. #define GE_HYBRID_EXECUTOR_MODEL_HYBRID_MODEL_ASYNC_EXECUTOR_H_
  18. #include <atomic>
  19. #include <mutex>
  20. #include <future>
  21. #include "external/ge/ge_api_error_codes.h"
  22. #include "external/ge/ge_api_types.h"
  23. #include "common/dump/opdebug_register.h"
  24. #include "graph/load/model_manager/data_inputer.h"
  25. #include "graph/load/model_manager/data_dumper.h"
  26. #include "hybrid/executor/hybrid_model_executor.h"
  27. #include "hybrid/executor/hybrid_model_pipeline_executor.h"
  28. #include "runtime/stream.h"
  29. namespace ge {
  30. namespace hybrid {
  31. class HybridModel;
  32. class HybridModelAsyncExecutor {
  33. public:
  34. explicit HybridModelAsyncExecutor(HybridModel *model);
  35. ~HybridModelAsyncExecutor();
  36. Status Init();
  37. Status Execute(const std::vector<DataBuffer> &inputs,
  38. const std::vector<GeTensorDesc> &input_desc,
  39. std::vector<DataBuffer> &outputs,
  40. std::vector<GeTensorDesc> &output_desc);
  41. Status Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs);
  42. Status Start(const std::shared_ptr<ModelListener> &listener);
  43. void SetDeviceId(uint32_t device_id);
  44. void SetModelId(uint32_t model_id);
  45. Status Stop();
  46. Status EnqueueData(const std::shared_ptr<InputDataWrapper> &data);
  47. uint32_t GetDataInputerSize() { return data_inputer_->Size(); }
  48. bool GetRunningFlag() const { return running_flag_; }
  49. void SetRunningFlag(bool flag) { running_flag_ = flag; }
  50. private:
  51. Status InitInputDesc();
  52. Status RunInternal();
  53. Status SyncVarData();
  54. Status HandleResult(Status exec_ret,
  55. uint32_t data_id,
  56. HybridModelExecutor::ExecuteArgs &args,
  57. OutputData *output_data);
  58. Status CopyOutputs(HybridModelExecutor::ExecuteArgs &args,
  59. OutputData *output_data,
  60. std::vector<ge::OutputTensorInfo> &outputs);
  61. Status OnComputeDone(uint32_t data_index, uint32_t result_code, std::vector<ge::OutputTensorInfo> &outputs);
  62. Status PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args);
  63. Status PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args);
  64. Status DumpOpDebug();
  65. std::mutex mu_;
  66. HybridModel *model_;
  67. uint32_t device_id_ = 0U;
  68. uint32_t model_id_ = 0U;
  69. std::atomic_bool run_flag_;
  70. // check whether model is running with data
  71. bool running_flag_ = false;
  72. std::unique_ptr<DataInputer> data_inputer_;
  73. std::unique_ptr<HybridModelExecutor> executor_;
  74. std::unique_ptr<HybridModelPipelineExecutor> pipe_executor_;
  75. std::future<Status> future_;
  76. uint64_t iterator_count_ = 0;
  77. rtStream_t stream_ = nullptr;
  78. std::map<uint32_t, int64_t> input_sizes_;
  79. std::map<uint32_t, GeTensorDescPtr> input_tensor_desc_;
  80. std::vector<bool> is_input_dynamic_;
  81. std::shared_ptr<ModelListener> listener_;
  82. DataDumper data_dumper_;
  83. bool is_op_debug_reg_ = false;
  84. OpdebugRegister op_debug_register_;
  85. };
  86. } // namespace hybrid
  87. } // namespace ge
  88. #endif // GE_HYBRID_EXECUTOR_MODEL_HYBRID_MODEL_ASYNC_EXECUTOR_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示