You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

memory_api.h 2.4 kB

4 years ago
4 years ago
4 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. /**
  2. * Copyright (c) Huawei Technologies Co., Ltd. 2021. All rights reserved.
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef INC_FRAMEWORK_MEMORY_MEMORY_API_H_
  17. #define INC_FRAMEWORK_MEMORY_MEMORY_API_H_
  18. #include "external/ge/ge_api_error_codes.h"
  19. #include "runtime/mem.h"
  20. namespace ge {
  21. enum MemStorageType {
  22. HBM = 0,
  23. RDMA_HBM,
  24. HOST_DDR,
  25. };
  26. struct HostVarInfo {
  27. uint64_t base_addr;
  28. uint64_t var_size;
  29. };
  30. struct TensorInfo {
  31. std::string var_name;
  32. std::vector<int64_t> dims;
  33. DataType data_type;
  34. };
  35. ///
  36. /// \param size [in] rdma pool memory size to be allocated.
  37. /// \param mem_type [in] memory type for rdma pool.
  38. /// \return Status result of function
  39. GE_FUNC_VISIBILITY Status InitRdmaPool(size_t size, rtMemType_t mem_type = RT_MEMORY_HBM);
  40. ///
  41. /// \param var_info [in] host variable addr infos.
  42. /// \param mem_type [in] memory type for rdma pool.
  43. /// \return Status result of function
  44. GE_FUNC_VISIBILITY Status RdmaRemoteRegister(const std::vector<HostVarInfo> &var_info,
  45. rtMemType_t mem_type = RT_MEMORY_HBM);
  46. ///
  47. /// \param tensor_info [in] description for tensor stored shared memory.
  48. /// \param dev_addr [out] malloced shared memory addr.
  49. /// \param memory_size [out] malloced shared memory size.
  50. /// \return Status result of function
  51. GE_FUNC_VISIBILITY Status MallocSharedMemory(const TensorInfo &tensor_info, uint64_t &dev_addr, uint64_t &memory_size);
  52. ///
  53. /// \param var_name [in] var_name name of host variable.
  54. /// \param base_addr [out] base_addr vase addr of host variable.
  55. /// \param var_size [out] var_size memory_size of host variable.
  56. /// \return Status result of function
  57. GE_FUNC_VISIBILITY Status GetVarBaseAddrAndSize(const std::string &var_name, uint64_t &base_addr, uint64_t &var_size);
  58. } // namespace ge
  59. #endif // INC_FRAMEWORK_MEMORY_MEMORY_API_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示