You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

taskdown_common.hpp 3.3 kB

3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef TASKDOWN_COMMON_H_
  17. #define TASKDOWN_COMMON_H_
  18. #include <map>
  19. #include "cce/cce_def.hpp"
  20. #include "common/attr_list.hpp"
  21. #include "l2fusion_struct.hpp"
  22. namespace cce {
  23. #define CC_FUSION_OP_MAX 32
  24. typedef enum tagccKernelType {
  25. CCE_AI_CORE = 0, /* cce aicore */
  26. CCE_AI_CPU = 1, /* cce aicpu */
  27. TE = 2, /* te operator*/
  28. CUSTOMIZED = 3, /* customized operator */
  29. TE_AI_CORE = 4, /* te aicore operator*/
  30. TE_AI_CPU = 5, /* te aicpu operator */
  31. AI_CPU = 6, /* aicpu */
  32. CUST_AI_CPU = 7, /* custom aicpu*/
  33. HOST_CPU = 8, /* host cpu */
  34. INVALID = 10000 /* unknown kernel type */
  35. } ccKernelType;
  36. typedef struct tagOpContext {
  37. ccKernelType kernelType;
  38. uint32_t opId;
  39. uint32_t kernelFuncId;
  40. uint32_t opIndex;
  41. uint32_t opCount;
  42. uint32_t opIndex2[CC_FUSION_OP_MAX];
  43. bool isFlowtable;
  44. uint16_t *argsOffset;
  45. uint32_t argsCount;
  46. uint64_t genDataBaseAddr;
  47. uint64_t genDataBaseSize;
  48. uint64_t genWeightBaseAddr;
  49. uint64_t genWeightBaseSize;
  50. uint64_t genVariableBaseAddr;
  51. uint64_t genVariableBaseSize;
  52. uint64_t l2ctrlSize;
  53. } ccOpContext;
  54. typedef struct tagOpReadCount {
  55. bool isEnable;
  56. std::map<uint64_t, uint32_t> tensorRc;
  57. } ccOpReadCount;
  58. typedef enum tagTaskDownKernelIdMode {
  59. CC_TASKDOWN_RESERVED = 0,
  60. CC_TASKDOWN_ROIPOOLING,
  61. CC_TASKDOWN_ROIPOOLING_PERF,
  62. CC_TASKDOWN_ROIALIGN,
  63. CC_TASKDOWN_ROIALIGN_PERF,
  64. CC_TASKDOWN_FC,
  65. CC_TASKDOWN_FC_COMPRESS,
  66. CC_TASKDOWN_SOFTMAX_LOWEST,
  67. CC_TASKDOWN_ROIALIGN_FP16,
  68. CC_TASKDOWN_RESIZE_NEAREST_NEIGHBOR,
  69. CC_TASKDOWN_RESIZE_NEAREST_NEIGHBOR_COMMON,
  70. } ccTaskDownKernelIdMode_t;
  71. ccStatus_t GetStream(ccHandle_t handle, rtStream_t *streamId);
  72. ccStatus_t ccClearOpMap(ccHandle_t handle);
  73. ccStatus_t ccSetKernelOpMap(ccHandle_t handle);
  74. ccStatus_t ccSetKernelContext(ccHandle_t handle, uint32_t opId, AttrList &attrList, bool isFlowtable,
  75. ccKernelType kernelType, void *pgraph);
  76. ccStatus_t ccGetKernelContext(rtStream_t streamId, ccOpContext &opContext);
  77. ccStatus_t ccGetKernelTypeByOpId(uint32_t opId, ccKernelType &kernelType);
  78. ccStatus_t ccSetStreamL2Map(ccHandle_t handle, fusion::TaskL2InfoMap_t &l2AllocRes);
  79. ccStatus_t ccGetStreamL2Map(rtStream_t streamId, uint32_t opIndex, fusion::TaskL2Info_t *&l2Data);
  80. ccStatus_t ccSetOpIndex(ccHandle_t handle, uint32_t opIndex);
  81. ccStatus_t ccGetOpIndex(ccHandle_t handle, uint32_t &opIndex);
  82. ccStatus_t ccGetOpIndexByStream(rtStream_t streamId, uint32_t &opIndex);
  83. ccStatus_t ccClearStreamL2Map(ccHandle_t handle);
  84. ccStatus_t ccGetKernelReadCount(rtStream_t streamId, ccOpReadCount &rc);
  85. } // namespace cce
  86. #endif // TASKDOWN_COMMON_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示