You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

op_task.cc 30 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/task/op_task.h"
  17. #include <google/protobuf/extension_set.h>
  18. #include <chrono>
  19. #include <thread>
  20. #include "aicpu/common/aicpu_task_struct.h"
  21. #include "common/dump/dump_manager.h"
  22. #include "common/dump/dump_op.h"
  23. #include "common/formats/formats.h"
  24. #include "framework/common/debug/log.h"
  25. #include "register/op_tiling.h"
  26. #include "runtime/rt.h"
  27. namespace ge {
  28. namespace {
  29. constexpr int kLaunchRetryTimes = 1000;
  30. constexpr int kSleepTime = 10;
  31. constexpr uint64_t kReleaseFlag = 1;
  32. constexpr int kCopyNum = 2;
  33. void FreeHbm(void *var) {
  34. if (var) {
  35. (void)rtFree(var);
  36. }
  37. }
  38. } // namespace
  39. Status OpTask::OpenDump(rtStream_t stream) {
  40. if (DumpManager::GetInstance().GetDumpProperties().IsSingleOpNeedDump()) {
  41. GELOGI("Dump is open in single op,start to set dump info");
  42. std::vector<uint64_t> input_addrs;
  43. std::vector<uint64_t> output_adds;
  44. auto input_size = op_desc_->GetInputsSize();
  45. auto output_size = op_desc_->GetOutputsSize();
  46. auto all_size = io_addrs_for_dump_.size();
  47. if (input_size + output_size != all_size) {
  48. GELOGE(FAILED, "io_addrs_for_dump_ size %zu is not equal input and output size %zu", all_size,
  49. input_size + output_size);
  50. return FAILED;
  51. }
  52. for (size_t i = 0; i < input_size; i++) {
  53. uint64_t input_addr = io_addrs_for_dump_[i];
  54. input_addrs.emplace_back(input_addr);
  55. }
  56. for (size_t j = 0; j < output_size; j++) {
  57. uint64_t output_addr = io_addrs_for_dump_[input_size + j];
  58. output_adds.emplace_back(output_addr);
  59. }
  60. dump_op_.SetDumpInfo(DumpManager::GetInstance().GetDumpProperties(), op_desc_, input_addrs, output_adds, stream);
  61. auto status = dump_op_.LaunchDumpOp();
  62. if (status != SUCCESS) {
  63. GELOGE(status, "Launch dump op failed in single op");
  64. return status;
  65. }
  66. return SUCCESS;
  67. }
  68. GELOGI("Dump is not open in single op");
  69. return SUCCESS;
  70. }
  71. void TbeOpTask::SetStubFunc(const std::string &name, const void *stub_func) {
  72. this->stub_name_ = name;
  73. this->stub_func_ = stub_func;
  74. }
  75. void TbeOpTask::SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  76. const OpDescPtr &op_desc) {
  77. args_ = std::move(args);
  78. arg_size_ = arg_size;
  79. block_dim_ = block_dim;
  80. op_desc_ = op_desc;
  81. }
  82. void TbeOpTask::SetSmDesc(void *sm_desc) { sm_desc_ = sm_desc; }
  83. const vector<int64_t> &OpTask::GetWorkspaceSizes() const { return workspace_sizes_; }
  84. void OpTask::SetWorkspaceSizes(const vector<int64_t> &workspace_sizes) { workspace_sizes_ = workspace_sizes; }
  85. TbeOpTask::~TbeOpTask() {
  86. if (sm_desc_ != nullptr) {
  87. (void)rtMemFreeManaged(sm_desc_);
  88. }
  89. if (tiling_buffer_ != nullptr) {
  90. (void)rtFree(tiling_buffer_);
  91. }
  92. }
  93. const void *TbeOpTask::GetArgs() const { return args_.get(); }
  94. size_t TbeOpTask::GetArgSize() const { return arg_size_; }
  95. const std::string &TbeOpTask::GetStubName() const { return stub_name_; }
  96. Status TbeOpTask::LaunchKernel(rtStream_t stream) {
  97. GELOGD("To invoke rtKernelLaunch. task = %s, block_dim = %u", this->stub_name_.c_str(), block_dim_);
  98. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  99. auto ret = rtKernelLaunch(stub_func_, block_dim_, args_.get(), static_cast<uint32_t>(arg_size_), sm_desc, stream);
  100. int retry_times = 0;
  101. while (ret != RT_ERROR_NONE && retry_times < kLaunchRetryTimes) {
  102. retry_times++;
  103. GELOGW("Retry after %d ms, retry_times: %d", kSleepTime, retry_times);
  104. std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTime));
  105. ret = rtKernelLaunch(stub_func_, block_dim_, args_.get(), arg_size_, sm_desc, stream);
  106. }
  107. if (ret != RT_ERROR_NONE) {
  108. GELOGE(RT_FAILED, "Invoke rtKernelLaunch failed. ret = %d, task = %s", ret, this->stub_name_.c_str());
  109. return RT_FAILED;
  110. }
  111. GELOGI("[TASK_INFO] %s", this->stub_name_.c_str());
  112. size_t input_size = op_desc_->GetInputsSize();
  113. size_t output_size = op_desc_->GetOutputsSize();
  114. uint64_t *io_addr = reinterpret_cast<uint64_t *>(args_.get());
  115. std::vector<uint64_t> io_addrs(io_addr, io_addr + input_size + output_size);
  116. SetIoAddrsForDump(io_addrs);
  117. auto status = OpenDump(stream);
  118. if (status != SUCCESS) {
  119. GELOGE(status, "Open dump failed in the tbe single op %s", this->stub_name_.c_str());
  120. return status;
  121. }
  122. return SUCCESS;
  123. }
  124. Status TbeOpTask::UpdateRunInfo(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
  125. GE_CHK_STATUS_RET_NOLOG(UpdateNodeByShape(input_desc, output_desc));
  126. // invoke OpParaCalculate
  127. GELOGD("Start to invoke OpParaCalculate.");
  128. optiling::OpRunInfo run_info;
  129. run_info.block_dim = 0;
  130. auto ret = optiling::OpParaCalculate(*node_, run_info);
  131. if (ret != GRAPH_SUCCESS) {
  132. GELOGE(FAILED, "Failed to invoke OpParaCalculate. ret = %u", ret);
  133. return FAILED;
  134. }
  135. SetWorkspaceSizes(run_info.workspaces);
  136. block_dim_ = run_info.block_dim;
  137. tiling_data_ = run_info.tiling_data.str();
  138. GELOGD("Done invoking OpParaCalculate successfully. block_dim = %u, tiling size = %zu", block_dim_,
  139. tiling_data_.size());
  140. return SUCCESS;
  141. }
  142. Status TbeOpTask::UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor) {
  143. int64_t storage_format_val = static_cast<Format>(FORMAT_RESERVED);
  144. (void)AttrUtils::GetInt(src_tensor, ge::ATTR_NAME_STORAGE_FORMAT, storage_format_val);
  145. auto storage_format = static_cast<Format>(storage_format_val);
  146. if (storage_format == FORMAT_RESERVED) {
  147. GELOGD("Storage format not set. update shape to [%s], and original shape to [%s]",
  148. src_tensor.GetShape().ToString().c_str(), src_tensor.GetOriginShape().ToString().c_str());
  149. dst_tensor.SetShape(src_tensor.GetShape());
  150. dst_tensor.SetOriginShape(src_tensor.GetOriginShape());
  151. } else {
  152. std::vector<int64_t> storage_shape;
  153. if (!AttrUtils::GetListInt(src_tensor, ge::ATTR_NAME_STORAGE_SHAPE, storage_shape)) {
  154. GELOGE(PARAM_INVALID, "Failed to get storage_shape while storage_format was set");
  155. return PARAM_INVALID;
  156. }
  157. GELOGD("Storage format set. update shape to [%s], and original shape to [%s]",
  158. GeShape(storage_shape).ToString().c_str(), src_tensor.GetShape().ToString().c_str());
  159. dst_tensor.SetShape(GeShape(std::move(storage_shape)));
  160. dst_tensor.SetOriginShape(src_tensor.GetShape());
  161. }
  162. return SUCCESS;
  163. }
  164. Status TbeOpTask::UpdateNodeByShape(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
  165. auto op_desc = node_->GetOpDesc();
  166. GE_CHECK_NOTNULL(op_desc);
  167. // Set runtime shape to node
  168. for (size_t i = 0; i < input_desc.size(); ++i) {
  169. auto tensor_desc = op_desc->MutableInputDesc(i);
  170. auto &runtime_tensor_desc = input_desc[i];
  171. GE_CHECK_NOTNULL(tensor_desc);
  172. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  173. }
  174. for (size_t i = 0; i < output_desc.size(); ++i) {
  175. auto tensor_desc = op_desc->MutableOutputDesc(i);
  176. auto &runtime_tensor_desc = output_desc[i];
  177. GE_CHECK_NOTNULL(tensor_desc);
  178. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  179. }
  180. return SUCCESS;
  181. }
  182. void TbeOpTask::EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, size_t max_tiling_size) {
  183. node_ = node;
  184. tiling_buffer_ = tiling_buffer;
  185. max_tiling_size_ = max_tiling_size;
  186. }
  187. Status TbeOpTask::LaunchKernel(const vector<void *> &inputs, const vector<void *> &outputs,
  188. const vector<void *> &workspaces, rtStream_t stream) {
  189. GELOGD("[%s] Start to launch kernel", node_->GetName().c_str());
  190. std::vector<void *> args;
  191. args.insert(args.end(), inputs.begin(), inputs.end());
  192. args.insert(args.end(), outputs.begin(), outputs.end());
  193. args.insert(args.end(), workspaces.begin(), workspaces.end());
  194. if (tiling_buffer_ != nullptr) {
  195. GELOGD("[%s] Start to copy tiling info. size = %zu", node_->GetName().c_str(), tiling_data_.size());
  196. GE_CHK_RT_RET(rtMemcpyAsync(tiling_buffer_, max_tiling_size_, tiling_data_.data(), tiling_data_.size(),
  197. RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
  198. args.emplace_back(tiling_buffer_);
  199. }
  200. if (memcpy_s(args_.get(), arg_size_, args.data(), args.size() * sizeof(void *)) != EOK) {
  201. GELOGE(INTERNAL_ERROR, "[%s] Failed to update kernel args.", node_->GetName().c_str());
  202. return INTERNAL_ERROR;
  203. }
  204. GELOGD("[%s] Start to invoke rtKernelLaunch", node_->GetName().c_str());
  205. GE_CHK_RT_RET(rtKernelLaunch(stub_func_, block_dim_, args_.get(), arg_size_, nullptr, stream));
  206. GELOGD("[%s] Done invoking rtKernelLaunch successfully", node_->GetName().c_str());
  207. return SUCCESS;
  208. }
  209. AiCpuBaseTask::~AiCpuBaseTask() {
  210. if (ext_info_addr_dev_ != nullptr) {
  211. (void)rtFree(ext_info_addr_dev_);
  212. }
  213. }
  214. Status AiCpuBaseTask::SetExtInfoAndType(const std::string &kernel_ext_info) {
  215. if (kernel_ext_info.empty()) {
  216. GELOGI("Kernel_ext_info is empty, no need copy to device.");
  217. return SUCCESS;
  218. }
  219. int32_t unknown_shape_type_val = 0;
  220. (void) AttrUtils::GetInt(op_desc_, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
  221. GELOGD("Get unknown_type is %d.", unknown_shape_type_val);
  222. unknown_type_ = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
  223. aicpu_ext_handle_.reset(new(std::nothrow) ::ge::hybrid::AicpuExtInfoHandler(op_desc_->GetName(),
  224. num_inputs_,
  225. num_outputs_,
  226. unknown_type_));
  227. GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, FAILED, "Malloc aicpu_ext_handle mem failed!");
  228. Status ret = aicpu_ext_handle_->Parse(kernel_ext_info);
  229. if (ret != SUCCESS) {
  230. GELOGE(ret, "Parse kernel ext info failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
  231. return ret;
  232. }
  233. GE_CHK_RT_RET(rtMalloc(&ext_info_addr_dev_, kernel_ext_info.size(), RT_MEMORY_HBM));
  234. GE_CHK_RT_RET(rtMemcpy(ext_info_addr_dev_, kernel_ext_info.size(),
  235. kernel_ext_info.data(), kernel_ext_info.size(), RT_MEMCPY_HOST_TO_DEVICE));
  236. return SUCCESS;
  237. }
  238. Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
  239. std::vector<GeTensorDesc> &output_desc,
  240. rtStream_t stream) {
  241. GELOGI("Update ext info begin, unknown_type=%d.", unknown_type_);
  242. if (num_inputs_ == 0 && num_outputs_ == 0) {
  243. GELOGI("No input and output, no need update ext info.");
  244. return SUCCESS;
  245. }
  246. GE_CHECK_NOTNULL(aicpu_ext_handle_);
  247. for (size_t i = 0; i < num_inputs_; ++i) {
  248. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(i, input_desc[i]),
  249. "Input[%zu] update input shape failed.", i);
  250. }
  251. if (unknown_type_ != DEPEND_COMPUTE) {
  252. for (size_t j = 0; j < num_outputs_; ++j) {
  253. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateOutputShapeAndType(j, output_desc[j]),
  254. "Output[%zu] UpdateOutputShapeAndType failed.", j);
  255. }
  256. }
  257. GE_CHK_RT_RET(rtMemcpyAsync(ext_info_addr_dev_,
  258. aicpu_ext_handle_->GetExtInfoLen(), // check size
  259. aicpu_ext_handle_->GetExtInfo(),
  260. aicpu_ext_handle_->GetExtInfoLen(),
  261. RT_MEMCPY_HOST_TO_DEVICE_EX,
  262. stream));
  263. GELOGI("Update ext info end.");
  264. return SUCCESS;
  265. }
  266. Status AiCpuBaseTask::UpdateOutputShape(vector<GeTensorDesc> &output_desc) {
  267. if (num_outputs_ == 0) {
  268. GELOGD("AiCpuBaseTask output_num is 0, no need update output shape.");
  269. return SUCCESS;
  270. }
  271. GELOGD("Start to update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape.");
  272. GE_CHK_RT_RET(rtMemcpy(aicpu_ext_handle_->GetExtInfo(),
  273. aicpu_ext_handle_->GetExtInfoLen(),
  274. ext_info_addr_dev_,
  275. aicpu_ext_handle_->GetExtInfoLen(),
  276. RT_MEMCPY_DEVICE_TO_HOST));
  277. for (size_t i = 0; i < num_outputs_; ++i) {
  278. GeShape shape;
  279. DataType data_type;
  280. aicpu_ext_handle_->GetOutputShapeAndType(i, shape, data_type);
  281. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(shape, output_desc[i]),
  282. "AiCpuCCTask Update [%zu]th output shape failed.", i);
  283. }
  284. GELOGD("Update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape finished.");
  285. return SUCCESS;
  286. }
  287. Status AiCpuBaseTask::UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc) {
  288. auto shape_old = output_desc.GetShape();
  289. output_desc.SetShape(shape_new);
  290. GELOGD("Update AiCpuBaseTask shape from %s to %s", shape_old.ToString().c_str(), shape_new.ToString().c_str());
  291. auto origin_shape_old = output_desc.GetOriginShape();
  292. auto origin_format = output_desc.GetOriginFormat();
  293. auto format = output_desc.GetFormat();
  294. if (origin_format == format) {
  295. output_desc.SetOriginShape(shape_new);
  296. return SUCCESS;
  297. }
  298. std::vector<int64_t> origin_dims_new;
  299. auto trans_ret = formats::TransShape(format, shape_new.GetDims(),
  300. output_desc.GetDataType(), origin_format, origin_dims_new);
  301. GE_CHK_STATUS_RET(trans_ret,
  302. "AiCpuTask originFormat[%d] is not same as format[%d], but TransShape failed, shape=%s.",
  303. origin_format, format, shape_new.ToString().c_str());
  304. auto origin_shape_new = GeShape(origin_dims_new);
  305. output_desc.SetOriginShape(origin_shape_new);
  306. GELOGD("AiCpuTask originFormat[%d] is not same as format[%d], need update from %s ro %s.",
  307. origin_format, format, origin_shape_old.ToString().c_str(), origin_shape_new.ToString().c_str());
  308. return SUCCESS;
  309. }
  310. AiCpuTask::~AiCpuTask() {
  311. FreeHbm(args_);
  312. FreeHbm(io_addr_);
  313. if (dynamic_flag_) {
  314. FreeHbm(workspace_addr_);
  315. }
  316. FreeHbm(copy_workspace_buf_);
  317. FreeHbm(copy_ioaddr_dev_);
  318. FreeHbm(copy_input_release_flag_dev_);
  319. FreeHbm(copy_input_data_size_dev_);
  320. FreeHbm(copy_input_src_dev_);
  321. FreeHbm(copy_input_dst_dev_);
  322. FreeHbm(copy_task_args_buf_);
  323. for (auto summary : output_summary_) {
  324. FreeHbm(summary);
  325. }
  326. for (auto out_shape : out_shape_hbm_) {
  327. FreeHbm(out_shape);
  328. }
  329. }
  330. const void *AiCpuTask::GetIOAddr() const { return io_addr_; }
  331. Status AiCpuTask::LaunchKernel(rtStream_t stream) {
  332. GELOGD("Start to launch kernel. task = %s", this->op_type_.c_str());
  333. auto ret = rtMemcpyAsync(workspace_addr_, task_info_.size(), task_info_.data(), task_info_.size(),
  334. RT_MEMCPY_HOST_TO_DEVICE_EX, stream);
  335. if (ret != RT_ERROR_NONE) {
  336. GELOGE(RT_FAILED, "rtMemcpyAsync workspace data failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  337. return RT_FAILED;
  338. }
  339. GELOGI("To invoke rtKernelLaunchEx. task = %s", this->op_type_.c_str());
  340. ret = rtKernelLaunchEx(args_, arg_size_, 0, stream);
  341. if (ret != RT_ERROR_NONE) {
  342. GELOGE(RT_FAILED, "Invoke rtKernelLaunch failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  343. return RT_FAILED;
  344. }
  345. GELOGI("[TASK_INFO] is %s", this->task_info_.c_str());
  346. auto status = OpenDump(stream);
  347. if (status != SUCCESS) {
  348. GELOGE(status, "Open dump failed in aicpu single op %s", this->op_type_.c_str());
  349. return status;
  350. }
  351. GELOGD("Done launch kernel successfully. task = %s", this->op_type_.c_str());
  352. return SUCCESS;
  353. }
  354. Status AiCpuTask::PrepareCopyInputs(vector<DataBuffer> &outputs) {
  355. std::vector<uint64_t> copy_input_release_flag;
  356. std::vector<uint64_t> copy_input_data_size;
  357. std::vector<uint64_t> copy_input_src;
  358. std::vector<uint64_t> copy_input_dst;
  359. for (size_t i = 0; i < num_outputs_; ++i) {
  360. const auto &summary = output_summary_host_[i];
  361. GELOGI("Node out[%zu] summary, shape data=0x%lx, shape data size=%lu, raw data=0x%lx, raw data size=%lu.",
  362. i, summary.shape_data_ptr, summary.shape_data_size,
  363. summary.raw_data_ptr, summary.raw_data_size);
  364. auto output = outputs[i];
  365. copy_input_release_flag.emplace_back(kReleaseFlag);
  366. if (summary.raw_data_size > 0) {
  367. copy_input_data_size.emplace_back(output.length);
  368. } else {
  369. copy_input_data_size.emplace_back(summary.raw_data_size);
  370. }
  371. copy_input_src.emplace_back(summary.raw_data_ptr);
  372. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(output.data));
  373. const auto &shape_buffer = out_shape_hbm_[i];
  374. copy_input_release_flag.emplace_back(kReleaseFlag);
  375. copy_input_data_size.emplace_back(summary.shape_data_size);
  376. copy_input_src.emplace_back(summary.shape_data_ptr);
  377. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(shape_buffer));
  378. }
  379. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  380. GE_CHK_RT_RET(rtMemcpy(copy_input_release_flag_dev_, copy_input_buf_len,
  381. copy_input_release_flag.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  382. GE_CHK_RT_RET(rtMemcpy(copy_input_data_size_dev_, copy_input_buf_len,
  383. copy_input_data_size.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  384. GE_CHK_RT_RET(rtMemcpy(copy_input_src_dev_, copy_input_buf_len,
  385. copy_input_src.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  386. GE_CHK_RT_RET(rtMemcpy(copy_input_dst_dev_, copy_input_buf_len,
  387. copy_input_dst.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  388. return SUCCESS;
  389. }
  390. Status AiCpuTask::ReadResultSummaryAndPrepareMemory() {
  391. for (size_t i = 0; i < num_outputs_; ++i) {
  392. auto &result_summary = output_summary_host_[i];
  393. GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
  394. output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary),
  395. RT_MEMCPY_DEVICE_TO_HOST));
  396. auto shape_data_size = result_summary.shape_data_size;
  397. void *shape_buffer = nullptr;
  398. if (shape_data_size > 0) {
  399. GE_CHK_RT_RET(rtMalloc(&shape_buffer, shape_data_size, RT_MEMORY_HBM));
  400. }
  401. out_shape_hbm_.emplace_back(shape_buffer);
  402. }
  403. return SUCCESS;
  404. }
  405. Status AiCpuTask::CopyDataToHbm(vector<DataBuffer> &outputs,
  406. rtStream_t stream) {
  407. GE_CHK_STATUS_RET_NOLOG(PrepareCopyInputs(outputs));
  408. GE_CHK_RT_RET(rtKernelLaunchEx(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  409. RT_KERNEL_DEFAULT, stream));
  410. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  411. return SUCCESS;
  412. }
  413. Status AiCpuTask::UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc) {
  414. for (size_t i = 0; i < num_outputs_; ++i) {
  415. const auto &result_summary = output_summary_host_[i];
  416. std::vector<int64_t> shape_dims;
  417. if (result_summary.shape_data_size > 0) {
  418. const auto &shape_hbm = out_shape_hbm_[i];
  419. uint32_t dim_num = result_summary.shape_data_size / sizeof(int64_t);
  420. std::unique_ptr<int64_t[]> shape_addr(new(std::nothrow) int64_t[dim_num]());
  421. GE_CHECK_NOTNULL(shape_addr);
  422. GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), result_summary.shape_data_size,
  423. shape_hbm, result_summary.shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
  424. for (uint32_t dim_idx = 0; dim_idx < dim_num; ++dim_idx) {
  425. shape_dims.emplace_back(shape_addr[dim_idx]);
  426. GELOGD("Node [%zu]th output dim[%u]=%ld.", i, dim_idx, shape_addr[dim_idx]);
  427. }
  428. }
  429. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(GeShape(shape_dims), output_desc[i]),
  430. "AiCpuTask update [%zu]th output shape failed.", i);
  431. }
  432. return SUCCESS;
  433. }
  434. Status AiCpuTask::UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
  435. vector<DataBuffer> &outputs,
  436. rtStream_t stream) {
  437. if (num_outputs_ == 0) {
  438. GELOGI("Output num is 0, there is no need to update the output and size.");
  439. return SUCCESS;
  440. }
  441. GELOGI("Update shape and data by result summary begin.");
  442. for (auto out_shape : out_shape_hbm_) {
  443. FreeHbm(out_shape);
  444. }
  445. out_shape_hbm_.clear();
  446. GE_CHK_STATUS_RET(ReadResultSummaryAndPrepareMemory(),
  447. "Read ResultSummary and update output shape failed.");
  448. GE_CHK_STATUS_RET(CopyDataToHbm(outputs, stream),
  449. "Copy data to output failed.");
  450. GE_CHK_STATUS_RET(UpdateShapeByHbmBuffer(output_desc),
  451. "Update shape by hbm buffer failed.");
  452. for (auto out_shape : out_shape_hbm_) {
  453. FreeHbm(out_shape);
  454. }
  455. out_shape_hbm_.clear();
  456. GELOGI("Update shape and data by result summary end.");
  457. return SUCCESS;
  458. }
  459. Status AiCpuTask::SetIO(const vector<void *> &inputs, vector<void *> &outputs) {
  460. vector<uint64_t> io_addrs;
  461. io_addrs.reserve(num_inputs_ + num_outputs_);
  462. for (size_t i = 0; i < num_inputs_; ++i) {
  463. GE_CHECK_NOTNULL(inputs[i]);
  464. GELOGD("AiCpuTask input[%zu] addr = %p", i, inputs[i]);
  465. io_addrs.emplace_back(reinterpret_cast<uintptr_t>(inputs[i]));
  466. }
  467. if (unknown_type_ != DEPEND_COMPUTE) {
  468. for (size_t i = 0; i < num_outputs_; ++i) {
  469. GE_CHECK_NOTNULL(outputs[i]);
  470. GELOGD("AiCpuTask output[%zu] addr = %p", i, outputs[i]);
  471. io_addrs.emplace_back(reinterpret_cast<uintptr_t>(outputs[i]));
  472. }
  473. } else {
  474. for (size_t i = 0; i < num_outputs_; ++i) {
  475. void *summary_addr = output_summary_[i];
  476. io_addrs.emplace_back(reinterpret_cast<uintptr_t>(summary_addr));
  477. }
  478. }
  479. if (!io_addrs.empty()) {
  480. auto *dst_io_addr = const_cast<uintptr_t *>(reinterpret_cast<const uintptr_t *>(io_addr_));
  481. GE_CHK_RT_RET(rtMemcpy(dst_io_addr,
  482. sizeof(uint64_t) * io_addrs.size(),
  483. &io_addrs[0],
  484. sizeof(uint64_t) * io_addrs.size(),
  485. RT_MEMCPY_HOST_TO_DEVICE));
  486. GE_CHECK_NOTNULL(dst_io_addr);
  487. };
  488. return SUCCESS;
  489. }
  490. Status AiCpuTask::InitForSummaryAndCopy() {
  491. if (unknown_type_ != DEPEND_COMPUTE || num_outputs_ == 0) {
  492. GELOGI("Unknown_type is %d, output num is %d.", unknown_type_, num_outputs_);
  493. return SUCCESS;
  494. }
  495. output_summary_.resize(num_outputs_);
  496. constexpr auto result_summary_size = sizeof(aicpu::FWKAdapter::ResultSummary);
  497. for (size_t i = 0; i < num_outputs_; ++i) {
  498. GE_CHK_RT_RET(rtMalloc(&output_summary_[i], result_summary_size, RT_MEMORY_HBM));
  499. }
  500. output_summary_host_.resize(num_outputs_);
  501. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  502. GE_CHK_RT_RET(rtMalloc(&copy_input_release_flag_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  503. GE_CHK_RT_RET(rtMalloc(&copy_input_data_size_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  504. GE_CHK_RT_RET(rtMalloc(&copy_input_src_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  505. GE_CHK_RT_RET(rtMalloc(&copy_input_dst_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  506. GE_CHK_RT_RET(rtMalloc(&copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
  507. std::vector<uint64_t> copy_io_addr;
  508. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_release_flag_dev_));
  509. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_data_size_dev_));
  510. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_src_dev_));
  511. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_dst_dev_));
  512. const auto copy_io_addr_size = sizeof(uint64_t) * copy_io_addr.size();
  513. GE_CHK_RT_RET(rtMalloc(&copy_ioaddr_dev_, copy_io_addr_size, RT_MEMORY_HBM));
  514. GE_CHK_RT_RET(rtMemcpy(copy_ioaddr_dev_, copy_io_addr_size,
  515. copy_io_addr.data(), copy_io_addr_size, RT_MEMCPY_HOST_TO_DEVICE));
  516. return SUCCESS;
  517. }
  518. Status AiCpuTask::SetMemCopyTask(const domi::KernelExDef &kernel_def) {
  519. if (kernel_def.args_size() > sizeof(STR_FWK_OP_KERNEL)) {
  520. GELOGE(PARAM_INVALID, "sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
  521. sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
  522. return PARAM_INVALID;
  523. }
  524. GE_CHK_RT_RET(rtMalloc(&copy_workspace_buf_, kernel_def.task_info_size(), RT_MEMORY_HBM));
  525. GE_CHK_RT_RET(rtMemcpy(copy_workspace_buf_, kernel_def.task_info_size(),
  526. kernel_def.task_info().data(), kernel_def.task_info_size(), RT_MEMCPY_HOST_TO_DEVICE));
  527. STR_FWK_OP_KERNEL aicpu_task = {0};
  528. auto sec_ret = memcpy_s(&aicpu_task, sizeof(STR_FWK_OP_KERNEL),
  529. kernel_def.args().data(), kernel_def.args().size());
  530. if (sec_ret != EOK) {
  531. GELOGE(FAILED, "memcpy failed, ret: %d", sec_ret);
  532. return FAILED;
  533. }
  534. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = reinterpret_cast<uintptr_t>(copy_ioaddr_dev_);
  535. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = reinterpret_cast<uintptr_t>(copy_workspace_buf_);
  536. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  537. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  538. GE_CHK_RT_RET(rtMemcpy(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  539. &aicpu_task, sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE));
  540. return SUCCESS;
  541. }
  542. Status AiCpuTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  543. const std::vector<DataBuffer> &input_buffers,
  544. std::vector<GeTensorDesc> &output_desc,
  545. std::vector<DataBuffer> &output_buffers,
  546. rtStream_t stream) {
  547. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  548. std::vector<void *> inputs;
  549. std::vector<void *> outputs;
  550. for (auto &buffer : input_buffers) {
  551. inputs.emplace_back(buffer.data);
  552. }
  553. for (auto &buffer : output_buffers) {
  554. outputs.emplace_back(buffer.data);
  555. }
  556. GE_CHK_STATUS_RET_NOLOG(SetIO(inputs, outputs));
  557. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  558. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  559. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  560. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  561. } else if (unknown_type_ == DEPEND_COMPUTE) {
  562. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  563. GE_CHK_STATUS_RET_NOLOG(UpdateShapeAndDataByResultSummary(output_desc, output_buffers, stream));
  564. }
  565. return SUCCESS;
  566. }
  567. void AiCpuCCTask::SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size) {
  568. args_ = std::move(args);
  569. arg_size_ = arg_size;
  570. // The blockdim value is defult "1" for rtCpuKernelLaunch
  571. block_dim_ = 1;
  572. }
  573. void AiCpuCCTask::SetSoName(const std::string &so_name) { so_name_ = so_name; }
  574. void AiCpuCCTask::SetkernelName(const std::string &kernel_Name) { kernel_name_ = kernel_Name; }
  575. void AiCpuCCTask::SetIoAddr(void *io_addr) { io_addr_ = io_addr; }
  576. const void *AiCpuCCTask::GetIOAddr() const { return io_addr_; }
  577. const void *AiCpuCCTask::GetArgs() const { return args_.get(); }
  578. size_t AiCpuCCTask::GetArgSize() const { return arg_size_; }
  579. AiCpuCCTask::~AiCpuCCTask() {
  580. }
  581. Status AiCpuCCTask::LaunchKernel(rtStream_t stream) {
  582. GELOGI("To invoke rtCpuKernelLaunch. block_dim = %u, so_name is %s, kernel_name is %s", block_dim_, so_name_.data(),
  583. kernel_name_.data());
  584. // sm_desc is nullptr, because l2 buffer does not support
  585. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  586. auto ret = rtCpuKernelLaunchWithFlag(static_cast<const void *>(so_name_.data()),
  587. static_cast<const void *>(kernel_name_.data()),
  588. block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
  589. sm_desc, stream, dump_flag_);
  590. if (ret != RT_ERROR_NONE) {
  591. GELOGE(ret, "Invoke rtCpuKernelLaunch failed. ret = %d", ret);
  592. return ret;
  593. }
  594. GELOGD("Invoke rtCpuKernelLaunch succeeded");
  595. size_t input_size = op_desc_->GetInputsSize();
  596. size_t output_size = op_desc_->GetOutputsSize();
  597. uint64_t *io_addr = reinterpret_cast<uint64_t *>(io_addr_);
  598. std::vector<uint64_t> io_addrs (io_addr, io_addr + input_size + output_size);
  599. SetIoAddrsForDump(io_addrs);
  600. auto status = OpenDump(stream);
  601. if (status != SUCCESS) {
  602. GELOGE(status, "Open dump failed in the aicpucc single op %s", this->kernel_name_.c_str());
  603. return status;
  604. }
  605. return SUCCESS;
  606. }
  607. Status AiCpuCCTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  608. const std::vector<DataBuffer> &input_buffers,
  609. std::vector<GeTensorDesc> &output_desc,
  610. std::vector<DataBuffer> &output_buffers,
  611. rtStream_t stream) {
  612. GE_CHK_BOOL_RET_STATUS(unknown_type_ != DEPEND_COMPUTE, FAILED,
  613. "AiCpuCCTask unknown type[%d] is depend compute, it's not supported now.",
  614. unknown_type_);
  615. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  616. size_t arg_index = 0;
  617. auto *task_io_addr = reinterpret_cast<uintptr_t *>(io_addr_);
  618. GE_CHECK_NOTNULL(task_io_addr);
  619. for (auto &input : input_buffers) {
  620. task_io_addr[arg_index++] = reinterpret_cast<uintptr_t>(input.data);
  621. }
  622. for (auto &output : output_buffers) {
  623. task_io_addr[arg_index++] = reinterpret_cast<uintptr_t>(output.data);
  624. }
  625. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  626. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  627. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  628. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  629. }
  630. return SUCCESS;
  631. }
  632. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示