You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_mem_assigner.cc 72 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/build/memory/graph_mem_assigner.h"
  17. #include <cstring>
  18. #include <set>
  19. #include "common/math/math_util.h"
  20. #include "common/util/error_manager/error_manager.h"
  21. #include "framework/common/debug/ge_log.h"
  22. #include "framework/common/debug/log.h"
  23. #include "graph/build/memory/hybrid_mem_assigner.h"
  24. #include "graph/build/memory/var_mem_assign_util.h"
  25. #include "graph/build/memory/block_mem_assigner.h"
  26. #include "graph/common/omg_util.h"
  27. #include "graph/debug/ge_attr_define.h"
  28. #include "graph/ge_attr_value.h"
  29. #include "graph/manager/graph_var_manager.h"
  30. #include "graph/utils/tensor_utils.h"
  31. #include "graph/utils/type_utils.h"
  32. namespace {
  33. const int kAllInputAddrIsAtomic = -1;
  34. const int kVirtualInputNodeMemoryReuse = 0;
  35. const int kVirtualOutputNodeMemoryReuse = 1;
  36. // One state per bit cannot be repeated
  37. enum ContinuousType { kTypeInput = 1, kTypeInputNoPadding = 2, kTypeOutput = 4, kTypeOutputNoPadding = 8 };
  38. int64_t GetSymbolOutputOffset(const std::map<std::string, std::string> &anchor_to_symbol,
  39. const std::map<std::string, std::list<ge::NodeIndexIO>> &symbol_to_anchors,
  40. const ge::NodePtr &node, const uint32_t i) {
  41. ge::NodeIndexIO cur_node_index_io(node, i, ge::kOut);
  42. auto iter1 = anchor_to_symbol.find(cur_node_index_io.ToString());
  43. if (iter1 == anchor_to_symbol.end()) {
  44. return ge::kInvalidOffset;
  45. }
  46. auto out_symbol = iter1->second;
  47. auto iter2 = symbol_to_anchors.find(out_symbol);
  48. if (iter2 == symbol_to_anchors.end()) {
  49. return ge::kInvalidOffset;
  50. }
  51. for (const auto &node_index_io : iter2->second) {
  52. if (node_index_io.value_ == out_symbol) {
  53. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  54. vector<int64_t> symbol_output_list = node_index_io.node_->GetOpDesc()->GetOutputOffset();
  55. if (node_index_io.index_ >= symbol_output_list.size()) {
  56. return ge::kInvalidOffset;
  57. }
  58. GELOGD("Node %s %uth output offset is %ld, Symbol %s output offset is %ld.", node->GetName().c_str(), i,
  59. output_list[i], iter2->first.c_str(), symbol_output_list.at(node_index_io.index_));
  60. return symbol_output_list.at(node_index_io.index_);
  61. }
  62. }
  63. return ge::kInvalidOffset;
  64. }
  65. } // namespace
  66. namespace ge {
  67. Status VariableMemoryAssigner::Assign() {
  68. Status result = ge::VarMemAssignUtil::AssignConstantOpMemory(compute_graph_);
  69. if (result != ge::SUCCESS) {
  70. return result;
  71. }
  72. result = ge::VarMemAssignUtil::AssignVarMemory(compute_graph_);
  73. if (result != ge::SUCCESS) {
  74. return result;
  75. }
  76. return ge::SUCCESS;
  77. }
  78. Status VariableMemoryAssigner::AssignVarAttr2Nodes() {
  79. Status result = ge::VarMemAssignUtil::AssignVarAttr2Nodes(compute_graph_);
  80. if (result != ge::SUCCESS) {
  81. return result;
  82. }
  83. return ge::SUCCESS;
  84. }
  85. Status VariableMemoryAssigner::AssignMemory2HasRefAttrNode() {
  86. Status result = ge::VarMemAssignUtil::AssignMemory2HasRefAttrNode(compute_graph_);
  87. if (result != ge::SUCCESS) {
  88. return result;
  89. }
  90. return ge::SUCCESS;
  91. }
  92. Status GraphMemoryAssigner::AssignMemory() {
  93. ge::HybridMemAssignerPtr mem_assigner(new(std::nothrow) HybridMemAssigner(compute_graph_));
  94. if (mem_assigner->Assign() != ge::SUCCESS) {
  95. GELOGE(ge::FAILED, "Memory assigner failed");
  96. return ge::FAILED;
  97. }
  98. MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset());
  99. memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);
  100. if (mem_assigner->GetP2PMemOffset() >= 0) {
  101. MemoryOffset p2p_memory_offset(RT_MEMORY_P2P_DDR, mem_assigner->GetP2PMemOffset());
  102. memory_offset_.emplace(RT_MEMORY_P2P_DDR, p2p_memory_offset);
  103. }
  104. auto session_id = compute_graph_->GetSessionID();
  105. int64_t var_size_before_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM);
  106. auto variable_assigner =
  107. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  108. if (variable_assigner == nullptr) {
  109. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  110. return ge::FAILED;
  111. }
  112. if (variable_assigner->Assign() != ge::SUCCESS) {
  113. return ge::FAILED;
  114. }
  115. int64_t var_size_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM) - var_size_before_assign;
  116. GELOGD("GraphMemoryAssigner::AssignMemory variable size = %ld", var_size_assign);
  117. mem_assigner_ = std::move(mem_assigner);
  118. return ge::SUCCESS;
  119. }
  120. ge::Status GraphMemoryAssigner::AssignVarAttr2Nodes() {
  121. auto variable_assigner =
  122. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  123. if (variable_assigner == nullptr) {
  124. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  125. return ge::FAILED;
  126. }
  127. if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) {
  128. return ge::FAILED;
  129. }
  130. return ge::SUCCESS;
  131. }
  132. ge::Status GraphMemoryAssigner::AssignMemory2HasRefAttrNode() {
  133. auto variable_assigner =
  134. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  135. if (variable_assigner == nullptr) {
  136. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  137. return ge::FAILED;
  138. }
  139. if (variable_assigner->AssignMemory2HasRefAttrNode() != ge::SUCCESS) {
  140. return ge::FAILED;
  141. }
  142. return ge::SUCCESS;
  143. }
  144. ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &output_desc,
  145. int64_t dim_index, int64_t &output_mem_size,
  146. int64_t &batch_dim_num, int64_t &out_size) {
  147. graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size);
  148. if (graph_status != GRAPH_SUCCESS) {
  149. GELOGE(FAILED, "Opdesc GetSize failed!");
  150. return FAILED;
  151. }
  152. GeShape output_shape = output_desc->GetShape();
  153. std::vector<int64_t> output_dims = output_shape.GetDims();
  154. if (dim_index >= static_cast<int64_t>(output_dims.size())) {
  155. std::string error = "Invaild value" + FmtToStr(dim_index) +
  156. " of attr _reuse_input_on_dim_index, which is out of data range [0,"
  157. + std::to_string(output_dims.size()) + ")";
  158. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  159. return FAILED;
  160. }
  161. for (int64_t index = 0; index < dim_index; index++) {
  162. FMK_INT64_MULCHECK(batch_dim_num, output_dims[index]);
  163. batch_dim_num *= output_dims[index];
  164. output_dims[index] = 1;
  165. }
  166. output_shape = GeShape(output_dims);
  167. Format out_format = output_desc->GetFormat();
  168. DataType data_type = output_desc->GetDataType();
  169. graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size);
  170. if (graph_status != GRAPH_SUCCESS) {
  171. GELOGE(graph_status, "Opdesc CalcTensorMemSize failed!");
  172. return FAILED;
  173. }
  174. if (output_mem_size < 0) {
  175. std::string error = "After calculating tensor memory size, output_mem_size" + FmtToStr(output_mem_size) +
  176. " is out of data range [0," + std::to_string(INT64_MAX) + "]";
  177. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  178. return FAILED;
  179. }
  180. return SUCCESS;
  181. }
  182. Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size_t> &mem_type_to_offset) {
  183. if (memory_offset_.empty()) {
  184. GELOGE(FAILED, "memory_offset_ is empty.");
  185. return ge::FAILED;
  186. }
  187. GE_CHK_STATUS_RET(ReAssignContinuousMemory(is_loop_graph), "ReAssignContinuousMemory Failed!");
  188. GE_CHK_STATUS_RET(ReAssignAtomicMemory(is_loop_graph), "ReAssignAtomicMemory Failed!");
  189. size_t total_mem_offset = 0;
  190. for (auto pair : memory_offset_) {
  191. mem_type_to_offset[pair.first] = pair.second.mem_offset_;
  192. total_mem_offset += pair.second.mem_offset_;
  193. }
  194. auto session_id = compute_graph_->GetSessionID();
  195. if (total_mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) {
  196. GELOGE(ge::FAILED, "Current memoffset %zu is greater than memory manager malloc max size %zu", total_mem_offset,
  197. VarManager::Instance(session_id)->GetGraphMemoryMaxSize());
  198. for (auto iter : mem_type_to_offset) {
  199. ErrorManager::GetInstance().ATCReportErrMessage("E19022", {"memType", "size", "item", "maxsize"},
  200. {std::to_string(iter.first), std::to_string(iter.second), "featuremap",
  201. std::to_string(VarManager::Instance(session_id)->GetGraphMemoryMaxSize())});
  202. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  203. iter.second, iter.first);
  204. }
  205. return ge::FAILED;
  206. }
  207. return SUCCESS;
  208. }
  209. Status GraphMemoryAssigner::AssignZeroCopyMemory(map<int64_t, size_t> &mem_offset, size_t &zero_mem_copy_size) {
  210. BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger());
  211. GE_IF_BOOL_EXEC(priority_assigner == nullptr, GELOGE(FAILED, "Get priority_assigner failed."); return ge::FAILED;);
  212. size_t mem_offset_tmp = mem_offset[RT_MEMORY_HBM];
  213. // set offset for zero copy block
  214. for (auto &memory_block : priority_assigner->GetMemoryBlocks()) {
  215. if (memory_block == nullptr || memory_block->deleted_block_ || !memory_block->is_zero_copy_) {
  216. continue;
  217. }
  218. memory_block->Resize();
  219. memory_block->SetHeadOffset(mem_offset[RT_MEMORY_HBM]);
  220. mem_offset[RT_MEMORY_HBM] += memory_block->Size();
  221. memory_block->SetTailOffset(mem_offset[RT_MEMORY_HBM] - 1);
  222. }
  223. // set offset for zero copy nodes
  224. priority_assigner->SetOpMemOffset(true);
  225. zero_mem_copy_size = mem_offset[RT_MEMORY_HBM] - mem_offset_tmp;
  226. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  227. if (iter == memory_offset_.end()) {
  228. std::string error = "Memory offset does not have memory type[HBM]";
  229. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  230. return FAILED;
  231. }
  232. iter->second.mem_offset_ = mem_offset[RT_MEMORY_HBM];
  233. GELOGD("max_mem_offset:%zu, mem_offset:%zu, zero_mem_copy_size:%zu.", mem_offset[RT_MEMORY_HBM], mem_offset_tmp,
  234. zero_mem_copy_size);
  235. return SUCCESS;
  236. }
  237. uint32_t GetContinuousMemoryType(const OpDescPtr &op_desc) {
  238. if (op_desc == nullptr) {
  239. return 0;
  240. };
  241. bool is_continuous = false;
  242. uint32_t continuous_type = 0;
  243. // If GetBool fail, is_continuous is false.
  244. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT, is_continuous);
  245. if (is_continuous) {
  246. continuous_type |= kTypeInput;
  247. } else {
  248. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, is_continuous);
  249. if (is_continuous) {
  250. bool attr_reuse = false;
  251. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  252. if (attr_reuse) {
  253. continuous_type |= kTypeInputNoPadding;
  254. }
  255. }
  256. }
  257. is_continuous = false;
  258. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_continuous);
  259. if (is_continuous) {
  260. continuous_type |= kTypeOutput;
  261. } else {
  262. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_OUTPUT, is_continuous);
  263. if (is_continuous) {
  264. bool attr_reuse = false;
  265. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  266. if (attr_reuse) {
  267. continuous_type |= kTypeOutputNoPadding;
  268. }
  269. }
  270. }
  271. if (continuous_type != 0) {
  272. GELOGI("Current node %s continuous type %d.", op_desc->GetName().c_str(), continuous_type);
  273. }
  274. return continuous_type;
  275. }
  276. Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &output_desc, uint32_t continuous_type,
  277. int64_t &tensor_size, int64_t &nopadding_size) {
  278. if ((op_desc == nullptr) || (output_desc == nullptr)) {
  279. GELOGE(FAILED, "Input para is nullptr.");
  280. return FAILED;
  281. }
  282. tensor_size = 0;
  283. nopadding_size = 0;
  284. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  285. if (is_nopadding) {
  286. int64_t attr_dim_index;
  287. bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
  288. if (!get_attr_dim_flag) {
  289. GELOGE(FAILED, "Get attr _reuse_input_on_dim_index failed.");
  290. return FAILED;
  291. }
  292. // Calculate tensor real size of each piece of data and out size of complete data
  293. int64_t batch_dim_num = 1;
  294. if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, nopadding_size, batch_dim_num, tensor_size) !=
  295. SUCCESS) {
  296. GELOGE(FAILED, "CalculateTensorRealSizeAndOutSize failed for node %s.", op_desc->GetName().c_str());
  297. return FAILED;
  298. }
  299. } else {
  300. if (ge::TensorUtils::GetSize(*output_desc, tensor_size) != ge::SUCCESS) {
  301. GELOGE(FAILED, "GetSize failed.");
  302. return FAILED;
  303. }
  304. }
  305. if ((tensor_size < 0) || (nopadding_size < 0)) {
  306. GELOGE(FAILED, "GetMemorySize for node %s failed.", op_desc->GetName().c_str());
  307. return FAILED;
  308. }
  309. return SUCCESS;
  310. }
  311. void AlignMemOffset(int64_t &mem_align_size) {
  312. if (mem_align_size <= 0) {
  313. return;
  314. }
  315. mem_align_size = (mem_align_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
  316. }
  317. bool IsContinuousInputConflict(const ge::NodePtr &node, const OpDescPtr &peer_op_desc) {
  318. bool is_peer_output_continuous = false;
  319. // If GetBool fail, is_peer_output_continuous is false.
  320. (void) ge::AttrUtils::GetBool(peer_op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_peer_output_continuous);
  321. // Get peer node output size, if size == 1(peer node has only one output), continuous input of the node and
  322. // continuous output of the previous node is the same, we can support it. If size != 1, there may be
  323. // conflict between the two, we can not support it.
  324. auto peer_output_size = peer_op_desc->GetOutputsSize();
  325. GE_IF_BOOL_EXEC(is_peer_output_continuous && (peer_output_size != 1),
  326. std::string error = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  327. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  328. " requires continuous output. There may be conflict between the two." +
  329. "This node is not supported now.";
  330. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  331. return true;);
  332. bool is_peer_reference = false;
  333. // If GetBool fail, is_peer_reference is false.
  334. (void) AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference);
  335. GE_IF_BOOL_EXEC(is_peer_reference,
  336. std::string warning = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  337. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  338. " is ref. There may be conflict between the two.";
  339. GELOGW("%s", warning.c_str());
  340. return false;);
  341. return false;
  342. }
  343. Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
  344. Status ret;
  345. // Stored nodes which need assign continuous input memory in `reverse topo order`
  346. std::vector<NodePtr> nodes_stack;
  347. std::map<NodePtr, uint32_t> node_2_continuous_type;
  348. // Traverse nodes
  349. for (auto &node : compute_graph_->GetAllNodes()) {
  350. GE_CHECK_NOTNULL(node);
  351. uint32_t continuous_type;
  352. auto iter = node_2_continuous_type.find(node);
  353. if (iter == node_2_continuous_type.end()) {
  354. continuous_type = GetContinuousMemoryType(node->GetOpDesc());
  355. node_2_continuous_type.emplace(node, continuous_type);
  356. } else {
  357. continuous_type = iter->second;
  358. }
  359. // Assign continuous input memory
  360. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  361. if (continuous_input) {
  362. if (AssignContinuousInputMemoryWithAtomicProcessDirectly(node, node_2_continuous_type)) {
  363. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, continuous_type),
  364. "Assign node %s continuous input memory failed.", node->GetName().c_str())
  365. } else {
  366. nodes_stack.push_back(node);
  367. }
  368. }
  369. // Assign continuous output memory
  370. int64_t memory_type = RT_MEMORY_HBM;
  371. bool continuous_output = ((continuous_type & kTypeOutput) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  372. if (continuous_output) {
  373. GE_CHK_STATUS_RET(GetNodeMemoryType(node, memory_type, "output"), "Get node memory type failed.");
  374. ret = AssignContinuousOutputMemory(node, memory_type, continuous_type);
  375. if (ret != ge::SUCCESS) {
  376. GELOGE(ret, "Assign continuous output memory failed!");
  377. return ret;
  378. }
  379. }
  380. }
  381. // Assign continuous input memory in `reverse topo order` which stored before
  382. while (!nodes_stack.empty()){
  383. auto node = nodes_stack.back();
  384. nodes_stack.pop_back();
  385. auto iter = node_2_continuous_type.find(node);
  386. if (iter == node_2_continuous_type.end()) {
  387. GELOGE(FAILED, "node %s has no continuous type!", node->GetName().c_str());
  388. return FAILED;
  389. }
  390. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, iter->second, true),
  391. "Assign node %s continuous input memory failed.", node->GetName().c_str())
  392. }
  393. for (auto pair : memory_offset_) {
  394. GELOGD("After reassign continuous memory, memory type = %ld, mem_offset = %zu.", pair.first,
  395. pair.second.mem_offset_);
  396. }
  397. return ge::SUCCESS;
  398. }
  399. Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start,
  400. int64_t &continuous_mem_size, int64_t memory_type, uint32_t continuous_type, bool reverse_refresh) {
  401. GELOGI("Current node %s needs continuous input.", node->GetName().c_str());
  402. auto iter = memory_offset_.find(memory_type);
  403. if (iter == memory_offset_.end()) {
  404. std::string error = "Memory offset does not have memory type" + FmtToStr(memory_type);
  405. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  406. return FAILED;
  407. }
  408. // The head and tail of hcom continuous input should be added 512
  409. iter->second.mem_offset_ += MEM_ALIGN_SIZE;
  410. continuous_mem_start = iter->second.mem_offset_;
  411. int64_t mem_offset = iter->second.mem_offset_;
  412. int64_t extra_memory_size = 0;
  413. bool is_continuous_input_allocated = false;
  414. auto op_desc = node->GetOpDesc();
  415. GE_CHECK_NOTNULL(op_desc);
  416. vector<int64_t> output_list_this = op_desc->GetOutputOffset();
  417. if (output_list_this.empty()) {
  418. std::string error = "node:" + FmtToStr(op_desc->GetName()) + "has no output offset";
  419. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  420. return FAILED;
  421. }
  422. (void) ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, is_continuous_input_allocated);
  423. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  424. GE_IF_BOOL_EXEC(in_data_anchor == nullptr, continue);
  425. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  426. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, continue);
  427. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  428. GE_IF_BOOL_EXEC(peer_op_desc == nullptr, continue);
  429. GE_IF_BOOL_EXEC(IsContinuousInputConflict(node, peer_op_desc), return PARAM_INVALID;);
  430. int64_t tensor_desc_size = 0;
  431. int64_t nopadding_size = 0;
  432. int64_t real_size = 0;
  433. std::vector<int64_t> offsets_of_fusion = {};
  434. bool lx_fusion = AttrUtils::GetListInt(peer_op_desc, ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, offsets_of_fusion);
  435. lx_fusion = lx_fusion && !offsets_of_fusion.empty();
  436. if (lx_fusion) {
  437. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(offsets_of_fusion.size())) {
  438. std::string error = "fusion: peer node" + FmtToStr(peer_op_desc->GetName()) +
  439. " index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
  440. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  441. return FAILED;
  442. }
  443. nopadding_size = offsets_of_fusion[peer_out_data_anchor->GetIdx()];
  444. tensor_desc_size = nopadding_size;
  445. } else {
  446. if (GetMemorySize(node->GetOpDesc(), peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx()),
  447. continuous_type, tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  448. return FAILED;
  449. }
  450. }
  451. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || lx_fusion;
  452. vector<int64_t> output_list = peer_op_desc->GetOutputOffset();
  453. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_list.size())) {
  454. std::string error = "index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
  455. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  456. return FAILED;
  457. }
  458. // when continuous input has been allocated first input is beginning offset
  459. bool is_allocated_first_input = is_continuous_input_allocated && (in_data_anchor->GetIdx() == 0);
  460. if (is_allocated_first_input) {
  461. std::map<int32_t, int32_t> out2ins;
  462. GE_CHK_STATUS_RET(GetAllRef(node, out2ins), "Node: %s get all ref failed", node->GetName().c_str());
  463. // output is beginning offset, set offset for input; only support this case now
  464. if ((out2ins.size() == 1) && (out2ins.begin()->second == 0) && (reverse_refresh)) {
  465. auto peer_output_offset = output_list.at(peer_out_data_anchor->GetIdx());
  466. output_list.at(peer_out_data_anchor->GetIdx()) = output_list_this.at(out2ins.begin()->first);
  467. peer_op_desc->SetOutputOffset(output_list);
  468. GELOGI("Node %s out %d ref in %d input node %s, use output offset %ld update %ld.", node->GetName().c_str(),
  469. out2ins.begin()->first, out2ins.begin()->second, peer_op_desc->GetName().c_str(),
  470. output_list_this.at(out2ins.begin()->first), peer_output_offset);
  471. } else {
  472. GELOGD("Node %s out %d ref in %d input node %s with total ref numbers %zu.", node->GetName().c_str(),
  473. out2ins.begin()->first, out2ins.begin()->second, peer_op_desc->GetName().c_str(), out2ins.size());
  474. }
  475. // first input is beginning offset
  476. mem_offset = output_list.at(peer_out_data_anchor->GetIdx());
  477. continuous_mem_start = output_list.at(peer_out_data_anchor->GetIdx());
  478. } else {
  479. // set offset for input
  480. output_list.at(peer_out_data_anchor->GetIdx()) = mem_offset;
  481. peer_op_desc->SetOutputOffset(output_list);
  482. }
  483. int64_t align_size = tensor_desc_size;
  484. if (is_nopadding) {
  485. mem_offset += nopadding_size;
  486. extra_memory_size += (tensor_desc_size - nopadding_size);
  487. real_size = nopadding_size;
  488. } else {
  489. ge::AlignMemOffset(align_size);
  490. mem_offset += align_size;
  491. // The head and tail of hcom continuous input should be added 512
  492. extra_memory_size = MEM_ALIGN_SIZE;
  493. real_size = tensor_desc_size;
  494. }
  495. GELOGI("[IMAS]Continuous input : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld] "
  496. "size[%zu] realsize[%ld] nopadding size[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
  497. peer_op_desc->GetName().c_str(), node->GetType().c_str(), peer_out_data_anchor->GetIdx(),
  498. output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(), memory_type,
  499. is_continuous_input_allocated ? 0UL : align_size, real_size, is_nopadding);
  500. }
  501. mem_offset += extra_memory_size;
  502. ge::AlignMemOffset(mem_offset);
  503. continuous_mem_size = mem_offset - continuous_mem_start;
  504. if (is_continuous_input_allocated) {
  505. // not allocate memory here, so no need add 512 in header
  506. iter->second.mem_offset_ -= MEM_ALIGN_SIZE;
  507. } else {
  508. iter->second.mem_offset_ = mem_offset;
  509. }
  510. return SUCCESS;
  511. }
  512. Status GetFirstInputPeerOutOutputOffset(const ge::NodePtr &node, int64_t &mem_offset) {
  513. auto in_data_anchor_list = node->GetAllInDataAnchors();
  514. if (in_data_anchor_list.empty()) {
  515. GELOGE(FAILED, "Node %s's in data anchor is empty.", node->GetName().c_str());
  516. return FAILED;
  517. }
  518. auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor();
  519. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, GELOGE(ge::FAILED, "peer_out_data_anchor is null.");
  520. return ge::FAILED);
  521. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  522. GE_IF_BOOL_EXEC(peer_op_desc == nullptr, GELOGE(ge::FAILED, "peer_op_desc is null."); return ge::FAILED);
  523. vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset();
  524. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) {
  525. GELOGE(FAILED, "Index : %d is out of range.", peer_out_data_anchor->GetIdx());
  526. return FAILED;
  527. }
  528. mem_offset = in_node_output_offsets.at(peer_out_data_anchor->GetIdx());
  529. return SUCCESS;
  530. }
  531. Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node, int64_t memory_type,
  532. uint32_t continuous_type) {
  533. GELOGI("Current node %s needs continuous output.", node->GetName().c_str());
  534. auto out_op_desc = node->GetOpDesc();
  535. GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
  536. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  537. if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) {
  538. GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
  539. out_op_desc->GetOutputsSize(), output_list.size());
  540. return ge::FAILED;
  541. }
  542. int64_t mem_offset = 0;
  543. bool is_nopadding = ((continuous_type & kTypeOutputNoPadding) != 0);
  544. if (is_nopadding) {
  545. // out tensor memory must be reused input tensor memory
  546. if (GetFirstInputPeerOutOutputOffset(node, mem_offset) != SUCCESS) {
  547. return ge::FAILED;
  548. }
  549. } else {
  550. // Get the reference type of the node, default is false
  551. bool is_ref = false;
  552. // If GetBool fail, is_ref is false.
  553. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  554. // If the output is ref type and refers to the ref of an input, the name of the output
  555. // and the input are the same. Ge encounters ref type, finds matching relationship according
  556. // to the names of input and output, and allocates the same memory address, eg: HCOMBroadcast
  557. if (is_ref) {
  558. GELOGI("Current node %s no needs assign continuous output because reference input by name.",
  559. node->GetName().c_str());
  560. return SUCCESS;
  561. }
  562. mem_offset = output_list[0];
  563. }
  564. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  565. output_list[out_data_anchor->GetIdx()] = mem_offset;
  566. int64_t tensor_desc_size = 0;
  567. int64_t nopadding_size = 0;
  568. if (GetMemorySize(out_op_desc, out_op_desc->GetOutputDescPtr(out_data_anchor->GetIdx()), continuous_type,
  569. tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  570. return FAILED;
  571. }
  572. if (is_nopadding) {
  573. mem_offset += nopadding_size;
  574. } else {
  575. mem_offset += tensor_desc_size;
  576. ge::AlignMemOffset(mem_offset);
  577. }
  578. GELOGI("[IMAS]Continuous output : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld]"
  579. " size[%zu] realsize[%ld] nopadding[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
  580. out_op_desc->GetName().c_str(), node->GetType().c_str(), out_data_anchor->GetIdx(),
  581. output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId(), memory_type, 0UL,
  582. is_nopadding ? nopadding_size : tensor_desc_size, is_nopadding);
  583. }
  584. out_op_desc->SetOutputOffset(output_list);
  585. return ge::SUCCESS;
  586. }
  587. Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
  588. // key:dynamic batch, batch name
  589. map<string, map<NodePtr, vector<NodePtr>>> normal_atomic_and_clean_nodes_map;
  590. map<string, vector<NodePtr>> connecting_output_atomic_nodes;
  591. Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes);
  592. if (status != SUCCESS) {
  593. GELOGE(status, "Failed to filter atomic nodes for memory assignment.");
  594. return status;
  595. }
  596. auto mem_iter = memory_offset_.find(RT_MEMORY_HBM);
  597. if (mem_iter == memory_offset_.end()) {
  598. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  599. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  600. return FAILED;
  601. }
  602. int64_t batch_atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  603. int64_t batch_max_mem_offset = batch_atomic_mem_start;
  604. for (auto &iter_batch : normal_atomic_and_clean_nodes_map) {
  605. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  606. for (auto &iter : iter_batch.second) {
  607. int64_t atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  608. GELOGD("Begin to reAssign atomic memory, atomic address memory start = %ld", atomic_mem_start);
  609. for (auto &atomic_node : iter.second) {
  610. vector<int64_t> mem_offset_end;
  611. status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end);
  612. if (status != SUCCESS) {
  613. GELOGE(status, "Assign atomic output and workspace memory failed, node name is %s.",
  614. atomic_node->GetName().c_str());
  615. return status;
  616. }
  617. }
  618. int64_t atomic_mem_size = static_cast<int64_t>(mem_iter->second.mem_offset_) - atomic_mem_start;
  619. if (atomic_mem_size != 0) {
  620. GE_CHK_STATUS_RET(SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size}, RT_MEMORY_HBM),
  621. "Failed to set attr for atomic addr clean node %s.", iter.first->GetName().c_str());
  622. }
  623. }
  624. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  625. }
  626. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  627. batch_atomic_mem_start = batch_max_mem_offset;
  628. for (auto &iter_batch : connecting_output_atomic_nodes) {
  629. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  630. if (AssignConnectNetOutputAtomicMemory(iter_batch.second) != SUCCESS) {
  631. GELOGE(FAILED, "Failed to assign memory of nodes that connect to netoutput.");
  632. return FAILED;
  633. }
  634. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  635. }
  636. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  637. return SUCCESS;
  638. }
  639. Status GraphMemoryAssigner::FilterAtomicNodesForMemoryAssign(
  640. map<string, map<NodePtr, vector<NodePtr>>> &normal_atomic_nodes_map,
  641. map<string, vector<NodePtr>> &connecting_output_atomic_nodes) {
  642. GE_CHECK_NOTNULL(compute_graph_);
  643. for (const auto &node : compute_graph_->GetAllNodes()) {
  644. if (node->GetType() == ATOMICADDRCLEAN) {
  645. map<string, vector<NodePtr>> tmp_normal_atomic_nodes;
  646. const auto &out_control_anchor = node->GetOutControlAnchor();
  647. GE_CHECK_NOTNULL(out_control_anchor);
  648. for (const auto &peer_in_control_anchor : out_control_anchor->GetPeerInControlAnchors()) {
  649. if (peer_in_control_anchor != nullptr) {
  650. auto peer_in_node = peer_in_control_anchor->GetOwnerNode();
  651. auto peer_in_node_desc = peer_in_node->GetOpDesc();
  652. if (peer_in_node_desc != nullptr) {
  653. bool is_atomic_node = false;
  654. // If GetBool fail, is_atomic_node is false.
  655. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic_node);
  656. if (is_atomic_node) {
  657. bool is_reference = false;
  658. // If GetBool fail, is_reference is false.
  659. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference);
  660. if (is_reference) {
  661. std::string error = "Op" + FmtToStr(peer_in_node_desc->GetName()) +
  662. " cannot have both atomic and is_reference attribute.";
  663. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  664. return ge::PARAM_INVALID;
  665. }
  666. std::string batch_label;
  667. (void)ge::AttrUtils::GetStr(peer_in_node_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  668. vector<int> is_connecting_output;
  669. // If GetBool fail, attr is_connecting_output is an empty vector.
  670. (void) ge::AttrUtils::GetListInt(peer_in_node_desc, ATTR_NAME_NODE_CONNECT_OUTPUT, is_connecting_output);
  671. if (is_connecting_output.empty()) {
  672. tmp_normal_atomic_nodes[batch_label].emplace_back(peer_in_node);
  673. continue;
  674. }
  675. connecting_output_atomic_nodes[batch_label].emplace_back(peer_in_node);
  676. tmp_normal_atomic_nodes[batch_label].clear();
  677. break;
  678. }
  679. }
  680. }
  681. }
  682. for (auto &it_atomic_node : tmp_normal_atomic_nodes) {
  683. if (!it_atomic_node.second.empty()) {
  684. normal_atomic_nodes_map[it_atomic_node.first][node] = it_atomic_node.second;
  685. }
  686. }
  687. }
  688. }
  689. return SUCCESS;
  690. }
  691. Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodePtr &node,
  692. vector<int64_t> &mem_offset_end) {
  693. auto node_op_desc = node->GetOpDesc();
  694. // Assign atomic node output memory
  695. Status ret = AssignAtomicOutputMemory(node, mem_offset_end);
  696. if (ret != SUCCESS) {
  697. GELOGE(ret, "Failed to assign atomic output memory, node is %s.", node_op_desc->GetName().c_str());
  698. return ret;
  699. }
  700. // Check and assign atomic node workspace memory
  701. map<string, map<int64_t, int64_t>> atomic_workspace_info;
  702. atomic_workspace_info = node_op_desc->TryGetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_INFO, atomic_workspace_info);
  703. if (!atomic_workspace_info.empty()) {
  704. bool is_fusion_node = false;
  705. // If GetBool fail, is_fusion_node is false.
  706. (void) ge::AttrUtils::GetBool(node_op_desc, ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
  707. if (is_fusion_node) {
  708. // Assign fusion atomic node workspace memory
  709. ret = AssignFusionAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  710. } else {
  711. // Assign single ordinary atomic node workspace memory, not include fusion node
  712. ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  713. }
  714. if (ret != SUCCESS) {
  715. GELOGE(ret, "Assign atomic workspace memory failed, node is %s.", node_op_desc->GetName().c_str());
  716. return ret;
  717. }
  718. } else {
  719. GELOGW("Current atomic node %s does not have attr ATOMIC_WORKSPACE_INFO.", node->GetName().c_str());
  720. }
  721. return SUCCESS;
  722. }
  723. Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) {
  724. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  725. if (iter == memory_offset_.end()) {
  726. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  727. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  728. return FAILED;
  729. }
  730. for (auto &node : connect_netoutput_nodes) {
  731. GE_CHECK_NOTNULL(node);
  732. if (node->GetOpDesc() == nullptr) {
  733. GELOGW("Current node %s op desc is nullptr, memory assignment is skipped.", node->GetName().c_str());
  734. continue;
  735. }
  736. // Atomic memory start addr
  737. int64_t original_atomic_mem_start = static_cast<int64_t>(iter->second.mem_offset_);
  738. GELOGD("Start to assign memory of atomic node, node name: %s, node type: %s, mem_offset: %ld.",
  739. node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start);
  740. vector<int64_t> mem_offset_end;
  741. if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) {
  742. GELOGE(FAILED, "Assign atomic output and workspace memory failed, node is %s.", node->GetName().c_str());
  743. return FAILED;
  744. }
  745. // All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately.
  746. if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end, RT_MEMORY_HBM) != SUCCESS) {
  747. GELOGE(FAILED, "Failed to set atomic attr separately.");
  748. return FAILED;
  749. }
  750. }
  751. return SUCCESS;
  752. }
  753. Status GraphMemoryAssigner::AssignReferenceMemory() {
  754. for (auto &node : compute_graph_->GetDirectNode()) {
  755. // Get the reference type of the node, default is false
  756. bool is_ref = false;
  757. // If GetBool fail, is_ref is false.
  758. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  759. if (!is_ref) {
  760. continue;
  761. }
  762. GELOGI("Current node %s needs to support the reference relationship between output and input.",
  763. node->GetName().c_str());
  764. auto out_op_desc = node->GetOpDesc();
  765. GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
  766. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  767. if (out_op_desc->GetOutputsSize() > output_list.size()) {
  768. GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
  769. out_op_desc->GetOutputsSize(), output_list.size());
  770. return ge::FAILED;
  771. }
  772. map<string, int> input_name_index;
  773. for (const auto &input_name : out_op_desc->GetAllInputNames()) {
  774. int index = out_op_desc->GetInputIndexByName(input_name);
  775. input_name_index.emplace(input_name, index);
  776. }
  777. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  778. string out_data_anchor_name = out_op_desc->GetOutputNameByIndex(out_data_anchor->GetIdx());
  779. auto iter = input_name_index.find(out_data_anchor_name);
  780. if (iter != input_name_index.end()) {
  781. int index = iter->second;
  782. GELOGI("Reference memory: input anchor index = %d, input anchor name = %s, output anchor name = %s.", index,
  783. iter->first.c_str(), out_data_anchor_name.c_str());
  784. GE_CHECK_NOTNULL(node->GetInDataAnchor(index));
  785. auto peer_out_anchor = node->GetInDataAnchor(index)->GetPeerOutAnchor();
  786. GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
  787. int peer_out_anchor_index = peer_out_anchor->GetIdx();
  788. auto peer_out_node = peer_out_anchor->GetOwnerNode();
  789. auto peer_out_op_desc = peer_out_node->GetOpDesc();
  790. GE_CHECK_NOTNULL(peer_out_op_desc);
  791. output_list[out_data_anchor->GetIdx()] = peer_out_op_desc->GetOutputOffset()[peer_out_anchor_index];
  792. GELOGI("Reference output : Set %s name[%s] output[%d] offset to [%ld] stream_id[%ld]",
  793. node->GetOwnerComputeGraph()->GetName().c_str(), peer_out_op_desc->GetName().c_str(),
  794. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], peer_out_op_desc->GetStreamId());
  795. } else {
  796. GELOGI("Reference output : origin %s name[%s] output[%d] offset is [%ld] stream_id[%ld]",
  797. node->GetOwnerComputeGraph()->GetName().c_str(), out_op_desc->GetName().c_str(),
  798. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId());
  799. }
  800. }
  801. out_op_desc->SetOutputOffset(output_list);
  802. }
  803. return ge::SUCCESS;
  804. }
  805. bool GraphMemoryAssigner::CheckInputIsSupportAtomic(const ge::NodePtr &node) {
  806. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  807. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  808. if (peer_out_data_anchor == nullptr) {
  809. continue;
  810. }
  811. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  812. if (peer_op_desc == nullptr) {
  813. continue;
  814. }
  815. if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) ||
  816. (peer_op_desc->GetType() == VARIABLE)) {
  817. std::string error = "Op" + FmtToStr(node->GetName()) + "'s peer out node" +
  818. FmtToStr(peer_op_desc->GetName()) + " is invalid, Constant/AippData/Variable is not supported";
  819. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  820. return false;
  821. }
  822. }
  823. return true;
  824. }
  825. Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, vector<int64_t> &mem_offset_end) {
  826. auto op_desc = node->GetOpDesc();
  827. GE_IF_BOOL_EXEC(op_desc == nullptr, GELOGE(ge::FAILED, "op_desc is null."); return ge::FAILED);
  828. mem_offset_end.clear();
  829. GELOGD("Begin to assign atomic output memory, node = %s.", op_desc->GetName().c_str());
  830. vector<int64_t> atomic_output_index;
  831. // If GetListInt fail, atomic_output_index is empty.
  832. (void) ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
  833. // Check atomic output
  834. vector<int64_t> output_list = op_desc->GetOutputOffset();
  835. if (atomic_output_index.size() > output_list.size()) {
  836. std::string error = "Op" + FmtToStr(node->GetName()) +
  837. "'s size of atomic_output_index is more than the size of output_list";
  838. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  839. return ge::FAILED;
  840. }
  841. auto output_list_size = static_cast<int64_t>(output_list.size());
  842. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  843. if (iter == memory_offset_.end()) {
  844. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  845. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  846. return FAILED;
  847. }
  848. for (auto &output_index : atomic_output_index) {
  849. if (output_index >= output_list_size) {
  850. std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
  851. " is more than the size" + FmtToStr(output_list_size) + " of output_list.";
  852. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  853. return ge::PARAM_INVALID;
  854. }
  855. // If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here
  856. bool is_assigned_mem = false;
  857. if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) {
  858. GELOGE(ge::FAILED, "Failed to get memory assignment of node %s.", node->GetName().c_str());
  859. return ge::FAILED;
  860. }
  861. // If you have already assigned an atomic address, skip it, and you don't need to reassign it.
  862. if (is_assigned_mem) {
  863. GELOGI(
  864. "Node %s atomic output : we have assigned atomic memory as the input of next node in "
  865. "ReAssignContinuousMemory function.",
  866. op_desc->GetName().c_str());
  867. continue;
  868. }
  869. auto output_desc = op_desc->GetAllOutputsDescPtr().at(output_index);
  870. int64_t size = 0;
  871. if (ge::TensorUtils::GetSize(*output_desc, size) != SUCCESS) {
  872. GELOGI("Get size failed");
  873. }
  874. output_list[output_index] = iter->second.mem_offset_;
  875. std::string batch_label;
  876. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  877. GELOGI("[IMAS]Atomic output : Set %s name[%s] optype[%s] output[%ld] offset to [%zu] stream_id[%ld] memtype[%u] "
  878. "size[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(), op_desc->GetName().c_str(),
  879. node->GetType().c_str(), output_index, iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM,
  880. size, size, batch_label.c_str());
  881. iter->second.mem_offset_ += size;
  882. AlignMemOffset(MEM_ALIGN_SIZE, RT_MEMORY_HBM);
  883. mem_offset_end.emplace_back(iter->second.mem_offset_);
  884. }
  885. op_desc->SetOutputOffset(output_list);
  886. return ge::SUCCESS;
  887. }
  888. Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index,
  889. bool &is_mem_assigned) {
  890. if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) {
  891. std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
  892. " is more than the size of node's AllOutDataAnchors.";
  893. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  894. return ge::PARAM_INVALID;
  895. }
  896. auto out_data_anchor = node->GetAllOutDataAnchors().at(output_index);
  897. GE_CHECK_NOTNULL(out_data_anchor);
  898. auto input_anchors = out_data_anchor->GetPeerInDataAnchors();
  899. for (auto &input_anchor : input_anchors) {
  900. auto output_node = input_anchor->GetOwnerNode();
  901. /// Get input atomic attr of peer output op, if atomic_input_index[0] = -1, indicates that the atomic address
  902. /// has been assigned
  903. vector<int64_t> atomic_input_index;
  904. (void) ge::AttrUtils::GetListInt(output_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, atomic_input_index);
  905. if (!atomic_input_index.empty() && (atomic_input_index[0] == kAllInputAddrIsAtomic)) {
  906. is_mem_assigned = true;
  907. break;
  908. }
  909. }
  910. return SUCCESS;
  911. }
  912. Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  913. map<string, map<int64_t, int64_t>> &workspace_info,
  914. vector<int64_t> &mem_offset_end) {
  915. GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str());
  916. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  917. if (mem_type_iter == memory_offset_.end()) {
  918. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  919. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  920. return FAILED;
  921. }
  922. vector<int64_t> workspace_vector = op_desc->GetWorkspace();
  923. for (auto iter = workspace_info.begin(); iter != workspace_info.end(); ++iter) {
  924. if (op_desc->GetName() != iter->first) {
  925. std::string error = "The node name" + FmtToStr(op_desc->GetName()) +
  926. " and the node name" + FmtToStr(iter->first) + " in workspace info are inconsistent.";
  927. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  928. return ge::PARAM_INVALID;
  929. }
  930. if (iter->second.empty()) {
  931. continue;
  932. }
  933. for (auto &info_iter : iter->second) {
  934. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  935. auto workspace_size = info_iter.second;
  936. if (workspace_index >= workspace_vector.size()) {
  937. std::string error = "The workspace index" + FmtToStr(workspace_index) +
  938. " is more than the size" + FmtToStr(workspace_vector.size()) + " of workspace vector.";
  939. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  940. return ge::PARAM_INVALID;
  941. }
  942. workspace_vector[workspace_index] = mem_type_iter->second.mem_offset_;
  943. std::string batch_label;
  944. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  945. GELOGI(
  946. "[IMAS]Atomic ordinary workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  947. "memtype[%u] size[%ld] real_size[%ld] batch[%s].",
  948. compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index,
  949. mem_type_iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size,
  950. batch_label.c_str());
  951. mem_type_iter->second.mem_offset_ += workspace_size;
  952. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  953. }
  954. }
  955. op_desc->SetWorkspace(workspace_vector);
  956. return SUCCESS;
  957. }
  958. Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  959. map<string, map<int64_t, int64_t>> &workspace_info,
  960. vector<int64_t> &mem_offset_end) {
  961. GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str());
  962. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  963. if (mem_type_iter == memory_offset_.end()) {
  964. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  965. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  966. return FAILED;
  967. }
  968. map<string, map<int64_t, int64_t>> sub_node_workspace_offset;
  969. for (auto &iter : workspace_info) {
  970. if (iter.second.empty()) {
  971. continue;
  972. }
  973. map<int64_t, int64_t> index_offset;
  974. for (auto &info_iter : iter.second) {
  975. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  976. auto workspace_size = info_iter.second;
  977. size_t workspace_offset = mem_type_iter->second.mem_offset_;
  978. std::string batch_label;
  979. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  980. GELOGI(
  981. "[IMAS]Atomic fusion workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  982. "memtype[%u] ssize[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(),
  983. op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index, mem_type_iter->second.mem_offset_,
  984. op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size, batch_label.c_str());
  985. mem_type_iter->second.mem_offset_ += workspace_size;
  986. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  987. index_offset.insert(std::make_pair(workspace_index, workspace_offset));
  988. }
  989. sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset));
  990. }
  991. if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) {
  992. GELOGE(FAILED, "Set EXT_ATTR_ATOMIC_WORKSPACE_OFFSET failed, op name:%s.", op_desc->GetName().c_str());
  993. return FAILED;
  994. }
  995. return SUCCESS;
  996. }
  997. Status GraphMemoryAssigner::CheckOffset() {
  998. std::map<std::string, std::string> anchor_to_symbol;
  999. std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
  1000. if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) {
  1001. GELOGE(FAILED, "Get ref-mapping for graph %s failed.", compute_graph_->GetName().c_str());
  1002. return FAILED;
  1003. }
  1004. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1005. GE_CHECK_NOTNULL(node->GetOpDesc());
  1006. vector<int64_t> input_list = node->GetOpDesc()->GetInputOffset();
  1007. for (auto input : input_list) {
  1008. if (input == ge::kInvalidOffset) {
  1009. std::string error = "Invalid input offset" + FmtToStr(ge::kInvalidOffset) +
  1010. + " in node" + FmtToStr(node->GetName());
  1011. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1012. return FAILED;
  1013. }
  1014. }
  1015. bool need_update_output = false;
  1016. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  1017. for (uint32_t i = 0; i < output_list.size(); ++i) {
  1018. if (output_list[i] == ge::kInvalidOffset) {
  1019. std::string error = "Invalid output offset" + FmtToStr(ge::kInvalidOffset) +
  1020. + " in node" + FmtToStr(node->GetName());
  1021. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1022. return FAILED;
  1023. }
  1024. if (node->GetType() == IDENTITY || node->GetType() == READVARIABLEOP) {
  1025. auto symbol_offset = GetSymbolOutputOffset(anchor_to_symbol, symbol_to_anchors, node, i);
  1026. if (symbol_offset != ge::kInvalidOffset && output_list[i] != symbol_offset) {
  1027. output_list[i] = symbol_offset;
  1028. need_update_output = true;
  1029. }
  1030. }
  1031. }
  1032. if (need_update_output) {
  1033. node->GetOpDesc()->SetOutputOffset(output_list);
  1034. }
  1035. vector<int64_t> workspace_list = node->GetOpDesc()->GetWorkspace();
  1036. for (auto workspace : workspace_list) {
  1037. if (workspace == ge::kInvalidOffset) {
  1038. std::string error = "Invalid workspace" + FmtToStr(ge::kInvalidOffset) +
  1039. + " in node" + FmtToStr(node->GetName());
  1040. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1041. GELOGE(FAILED, "Invalid workspace in node: %s workspace: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
  1042. return FAILED;
  1043. }
  1044. }
  1045. }
  1046. return SUCCESS;
  1047. }
  1048. ge::Status GraphMemoryAssigner::SetInputOffset() {
  1049. if (memory_offset_.empty()) {
  1050. GELOGE(FAILED, "memory_offset_ is empty.");
  1051. return FAILED;
  1052. }
  1053. for (auto pair : memory_offset_) {
  1054. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  1055. pair.second.mem_offset_, pair.first);
  1056. }
  1057. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1058. if (UpdateOpInputOffset(node) != ge::SUCCESS) {
  1059. GELOGE(ge::FAILED, "Update op input offset failed");
  1060. return ge::FAILED;
  1061. }
  1062. }
  1063. return ge::SUCCESS;
  1064. }
  1065. NodePtr GraphMemoryAssigner::GetKnownInputNode(const NodePtr &node) const {
  1066. if (!node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX)) {
  1067. return node;
  1068. }
  1069. if (NodeUtils::IsDynamicShape(node)) {
  1070. return node;
  1071. }
  1072. return NodeUtils::GetParentInput(node);
  1073. }
  1074. ge::Status GraphMemoryAssigner::UpdateConstArgsOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1075. uint32_t parent_index = 0;
  1076. if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) {
  1077. return SUCCESS;
  1078. }
  1079. // Subgraph Data Node, check for constant input.
  1080. std::string op_type;
  1081. const auto &in_node = NodeUtils::GetParentInput(node);
  1082. if (NodeUtils::GetConstOpType(in_node, op_type)) {
  1083. input_list = in_node->GetOpDesc()->GetOutputOffset();
  1084. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as const output.
  1085. return SUCCESS; // Constant input.
  1086. }
  1087. // Memory allocated for dynamic shape subgraph Data.
  1088. if (NodeUtils::IsDynamicShape(node)) {
  1089. return SUCCESS;
  1090. }
  1091. const auto &owner = node->GetOwnerComputeGraph();
  1092. const auto &parent_desc = owner->GetParentNode()->GetOpDesc();
  1093. const auto parent_inputs = parent_desc->GetInputOffset();
  1094. if (parent_inputs.size() <= parent_index) {
  1095. std::string error = "Get Parent input offset failed, node is " + FmtToStr(node->GetName()) +
  1096. + ", input_size is " + FmtToStr(parent_inputs.size()) + ", parent index is " +
  1097. FmtToStr(parent_index);
  1098. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1099. return FAILED;
  1100. }
  1101. input_list = {parent_inputs[parent_index]};
  1102. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as parent input.
  1103. return SUCCESS;
  1104. }
  1105. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1106. vector<int64_t> origin_input_list;
  1107. vector<int64_t> memory_type;
  1108. auto tmp_op_desc = node->GetOpDesc();
  1109. origin_input_list = tmp_op_desc->GetInputOffset();
  1110. int64_t valid_input_index = 0;
  1111. bool has_mem_type_attr = ge::AttrUtils::GetListInt(tmp_op_desc, ATTR_NAME_INPUT_MEM_TYPE_LIST, memory_type);
  1112. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1113. vector<int64_t> output_list;
  1114. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1115. if (peer_out_anchor == nullptr) {
  1116. continue;
  1117. }
  1118. // If the current node not broadcast, the OutputOffset of the previous node is used to update the input_list
  1119. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1120. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1121. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1122. output_list = last_peer_out_op_desc->GetOutputOffset();
  1123. auto out_index = static_cast<unsigned long>(peer_out_anchor->GetIdx());
  1124. if (output_list.size() > static_cast<size_t>(out_index)) {
  1125. int64_t input_offset = output_list.at(out_index);
  1126. if (has_mem_type_attr && !origin_input_list.empty()) {
  1127. auto input_size = tmp_op_desc->GetInputsSize();
  1128. auto ori_input_offset_list_size = origin_input_list.size();
  1129. auto mem_type_size = memory_type.size();
  1130. if ((input_size != mem_type_size) || (input_size != ori_input_offset_list_size)) {
  1131. std::string error = "fusion: node" + FmtToStr(tmp_op_desc->GetName()) +
  1132. + " input_size" + FmtToStr(input_size) + " diff from memory_type_size" +
  1133. FmtToStr(mem_type_size) + " from ori_input_offset_list_size" +
  1134. FmtToStr(ori_input_offset_list_size);
  1135. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1136. return ge::FAILED;
  1137. }
  1138. // not hbm keep orignal inputoffest
  1139. // hbm inputoffset = original inputoffset + outputoffset
  1140. input_offset = (memory_type[valid_input_index] == RT_MEMORY_L1 ? origin_input_list[valid_input_index]
  1141. : origin_input_list[valid_input_index] + output_list.at(out_index));
  1142. }
  1143. const auto &in_node = GetKnownInputNode(peer_out_anchor->GetOwnerNode());
  1144. if (in_node->GetType() == CONSTANT) {
  1145. GeTensorDesc tensor_desc = tmp_op_desc->GetInputDesc(static_cast<uint32_t>(anchor->GetIdx()));
  1146. GE_CHK_STATUS(TensorUtils::GetDataOffset(tensor_desc, input_offset));
  1147. }
  1148. GELOGD("%s node[%s] input[%ld] is set from node[%s] out index[%lu] offset[%ld]",
  1149. has_mem_type_attr ? "Fusion" : "",
  1150. tmp_op_desc->GetName().c_str(),
  1151. valid_input_index,
  1152. peer_out_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  1153. out_index,
  1154. input_offset);
  1155. input_list.emplace_back(input_offset);
  1156. valid_input_index++;
  1157. }
  1158. }
  1159. return ge::SUCCESS;
  1160. }
  1161. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node) const {
  1162. GE_CHECK_NOTNULL(node->GetOpDesc());
  1163. vector<int64_t> input_list;
  1164. if (node->GetType() == HCOMBROADCAST || node->GetType() == HVDCALLBACKBROADCAST) {
  1165. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1166. vector<int64_t> output_list;
  1167. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1168. if (peer_out_anchor == nullptr) {
  1169. continue;
  1170. }
  1171. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1172. // If the current node is broadcast and the preceding node is variable, because InputOffset has been set
  1173. // in function:AssignVarAttr2Nodes, then the InputOffset of the broadcast node is taken to update the input_list.
  1174. // Otherwise, the OutputOffset of the previous node is used to update the input_list.
  1175. if (last_peer_out_node->GetType() != VARIABLE) {
  1176. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1177. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1178. output_list = last_peer_out_op_desc->GetOutputOffset();
  1179. if (output_list.size() > static_cast<size_t>(peer_out_anchor->GetIdx())) {
  1180. input_list.emplace_back(output_list.at(peer_out_anchor->GetIdx()));
  1181. }
  1182. } else {
  1183. vector<int64_t> cur_node_input_list;
  1184. auto cur_node_op_desc = node->GetOpDesc();
  1185. GE_CHECK_NOTNULL(cur_node_op_desc);
  1186. cur_node_input_list = cur_node_op_desc->GetInputOffset();
  1187. if (cur_node_input_list.size() > static_cast<size_t>(anchor->GetIdx())) {
  1188. input_list.emplace_back(cur_node_input_list.at(anchor->GetIdx()));
  1189. }
  1190. }
  1191. }
  1192. } else if (node->GetType() == DATA_TYPE) {
  1193. if (UpdateConstArgsOffset(node, input_list) != SUCCESS) {
  1194. GELOGE(FAILED, "Update data: %s args offset failed.", node->GetName().c_str());
  1195. return FAILED;
  1196. }
  1197. } else {
  1198. if (UpdateOpInputOffset(node, input_list) != SUCCESS) {
  1199. GELOGE(FAILED, "Update node: %s input offset failed.", node->GetName().c_str());
  1200. return FAILED;
  1201. }
  1202. }
  1203. node->GetOpDesc()->SetInputOffset(input_list);
  1204. return SUCCESS;
  1205. }
  1206. Status GraphMemoryAssigner::SetIndependentAtomicAttr(const ge::NodePtr &node, int64_t atomic_mem_start,
  1207. const vector<int64_t> &mem_offset_end, int64_t memory_type) {
  1208. GELOGD("Start to set independent atomic attr, atomic_addr_clean memory offset start is %ld", atomic_mem_start);
  1209. // Parsing offset and size vectors
  1210. vector<int64_t> memory_offset_start;
  1211. vector<int64_t> memory_offset_size;
  1212. memory_offset_start.emplace_back(atomic_mem_start);
  1213. for (size_t i = 0; i < mem_offset_end.size(); ++i) {
  1214. memory_offset_start.emplace_back(mem_offset_end[i]);
  1215. // Number 1 means element index
  1216. auto size = memory_offset_start[i + 1] - memory_offset_start[i];
  1217. memory_offset_size.emplace_back(size);
  1218. }
  1219. memory_offset_start.pop_back();
  1220. const auto &in_control_anchor = node->GetInControlAnchor();
  1221. if (!memory_offset_size.empty() && in_control_anchor != nullptr) {
  1222. for (auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1223. if (peer_out_control_anchor == nullptr) {
  1224. continue;
  1225. }
  1226. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1227. auto peer_out_node_desc = peer_out_node->GetOpDesc();
  1228. if (peer_out_node_desc == nullptr) {
  1229. continue;
  1230. }
  1231. GELOGD("Current node memory_offset vector size is %zu, node name %s, node type is %s.", memory_offset_size.size(),
  1232. peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str());
  1233. if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) {
  1234. if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size, memory_type) != SUCCESS) {
  1235. GELOGE(FAILED, "Set atomic clean attr failed.");
  1236. return FAILED;
  1237. }
  1238. }
  1239. }
  1240. }
  1241. return SUCCESS;
  1242. }
  1243. ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const vector<int64_t> &atomic_mem_start,
  1244. const vector<int64_t> &atomic_mem_size, int64_t memory_type) {
  1245. auto node_op_desc = node->GetOpDesc();
  1246. if (node_op_desc != nullptr) {
  1247. GELOGD("Node %s, set atomic clean attr start.", node->GetName().c_str());
  1248. vector<int64_t> workspace_vector = node_op_desc->GetWorkspace();
  1249. vector<int64_t> workspace_byte_vector = node_op_desc->GetWorkspaceBytes();
  1250. workspace_vector.insert(workspace_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1251. workspace_byte_vector.insert(workspace_byte_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1252. node_op_desc->SetWorkspace(workspace_vector);
  1253. node_op_desc->SetWorkspaceBytes(workspace_byte_vector);
  1254. std::vector<int64_t> mem_start_vector;
  1255. // If GetListInt fail, mem_start_vector is empty.
  1256. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector);
  1257. mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1258. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector),
  1259. GELOGE(FAILED, "SetListInt failed.");
  1260. return FAILED);
  1261. std::vector<int64_t> mem_size_vector;
  1262. // If GetListInt fail, mem_size_vector is empty.
  1263. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector);
  1264. mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1265. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector),
  1266. GELOGE(FAILED, "SetListInt failed.");
  1267. return FAILED);
  1268. std::stringstream ss;
  1269. for (auto iter : atomic_mem_start) {
  1270. ss << iter << " ";
  1271. }
  1272. string atomic_mem_start_str = ss.str();
  1273. ss.clear();
  1274. ss.str("");
  1275. for (auto iter : atomic_mem_size) {
  1276. ss << iter << " ";
  1277. }
  1278. string atomic_mem_size_str = ss.str();
  1279. GELOGI("[IMAS]SetAtomicCleanAttr : Set %s atomic_node name[%s] optype[%s] output[0] offset to [%s] streamid[%ld]"
  1280. " memtype[%ld] size[%s]",node->GetOwnerComputeGraph()->GetName().c_str(), node_op_desc->GetName().c_str(),
  1281. node->GetType().c_str(), atomic_mem_start_str.c_str(), node->GetOpDesc()->GetStreamId(), memory_type,
  1282. atomic_mem_size_str.c_str());
  1283. }
  1284. return SUCCESS;
  1285. }
  1286. void GraphMemoryAssigner::AlignMemOffset(const int64_t &mem_align_size, int64_t memory_type) {
  1287. if (mem_align_size <= 0) {
  1288. return;
  1289. }
  1290. auto iter = memory_offset_.find(memory_type);
  1291. if (iter == memory_offset_.end()) {
  1292. GELOGW("Memory offset don't have memory type[%ld].", memory_type);
  1293. return;
  1294. }
  1295. iter->second.mem_offset_ =
  1296. (iter->second.mem_offset_ + mem_align_size - 1) / mem_align_size * mem_align_size;
  1297. }
  1298. ge::Status GraphMemoryAssigner::GetNodeListMemoryType(const vector<NodePtr> &nodes, int32_t mem_reuse_model,
  1299. int64_t &memory_type) {
  1300. memory_type = RT_MEMORY_HBM;
  1301. // In the dynamic batch scenario, the memory attributes of nodes are the same.
  1302. for (auto &n : nodes) {
  1303. if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
  1304. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "input"), "Get node memory type failed.")
  1305. break;
  1306. }
  1307. if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
  1308. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "output"), "Get node memory type failed.");
  1309. break;
  1310. }
  1311. }
  1312. return SUCCESS;
  1313. }
  1314. ge::Status GraphMemoryAssigner::GetNodeMemoryType(const NodePtr &node, int64_t &memory_type, string input_or_output) {
  1315. memory_type = RT_MEMORY_HBM;
  1316. vector<int64_t> mem_type_list;
  1317. if (input_or_output == "input") {
  1318. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_INPUT_MEM_TYPE_LIST, mem_type_list);
  1319. }
  1320. if (input_or_output == "output") {
  1321. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_OUTPUT_MEM_TYPE_LIST, mem_type_list);
  1322. }
  1323. if (mem_type_list.empty()) {
  1324. if (memory_offset_.find(memory_type) == memory_offset_.end()) {
  1325. std::string error = "Memory offset map does not have memory type" + FmtToStr(memory_type) +
  1326. + ", opname is " + FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1327. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1328. return FAILED;
  1329. }
  1330. return SUCCESS;
  1331. }
  1332. if (mem_type_list.size() != node->GetAllInDataAnchorsSize()) {
  1333. std::string error = "The size" + FmtToStr(mem_type_list.size()) +
  1334. " of mem type list is not equal to the size of in data anchor" +
  1335. FmtToStr(node->GetAllInDataAnchorsSize()) + ", opname is " +
  1336. FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1337. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1338. return FAILED;
  1339. }
  1340. if (!CheckContinuousMemType(mem_type_list)) {
  1341. GELOGE(FAILED, "Check continuous memory type failed.");
  1342. return FAILED;
  1343. }
  1344. // It is continuous memory and memory type is the same, so use the first memory.
  1345. memory_type = mem_type_list[0];
  1346. return SUCCESS;
  1347. }
  1348. bool GraphMemoryAssigner::CheckContinuousMemType(vector<int64_t> mem_type_list) {
  1349. if (mem_type_list.size() == 0) {
  1350. return true;
  1351. }
  1352. int64_t mem_type_tmp = mem_type_list[0];
  1353. for (auto mem_type : mem_type_list) {
  1354. if (mem_type != mem_type_tmp) {
  1355. std::string error = "The memory is continuous, but the type of the input memory is inconsistent. They are " +
  1356. FmtToStr(mem_type_tmp) + " and " + FmtToStr(mem_type);
  1357. ErrorManager::GetInstance().ATCReportErrMessage("E10043", {"reason"}, {error});
  1358. GELOGW("The memory is continuous, but the type of the input memory is inconsistent. They are [%ld] and [%ld].",
  1359. mem_type_tmp, mem_type);
  1360. return false;
  1361. }
  1362. }
  1363. if (memory_offset_.find(mem_type_tmp) == memory_offset_.end()) {
  1364. std::string error = "Memory offset map does not have memory type" + FmtToStr(mem_type_tmp);
  1365. ErrorManager::GetInstance().ATCReportErrMessage("E10043", {"reason"}, {error});
  1366. GELOGW("Memory offset map does not have memory type[%ld].", mem_type_tmp);
  1367. return false;
  1368. }
  1369. return true;
  1370. }
  1371. void GraphMemoryAssigner::PrintMemoryOffset() {
  1372. for (auto pair : memory_offset_) {
  1373. // Assign memory of max batch nodes that have the same batch label.
  1374. GELOGD("Reassign memory for max batch virtual nodes, memory type = %ld, memory offset = %zu.",
  1375. pair.first, pair.second.mem_offset_);
  1376. }
  1377. }
  1378. ge::Status GraphMemoryAssigner::GetAllRef(const NodePtr &node, map<int32_t, int32_t> &out2ins) {
  1379. for (const auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  1380. int32_t reuse_in_index = -1;
  1381. bool reuse_input_flag = GraphUtils::IsRefFromInput(out_data_anchor, reuse_in_index);
  1382. if (reuse_input_flag) {
  1383. if (node->GetInDataAnchor(reuse_in_index) != nullptr) {
  1384. out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index);
  1385. } else {
  1386. GELOGE(FAILED, "Invalid reuse_input value %d on output %d of node %s, please check attr reuse_input",
  1387. reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
  1388. return FAILED;
  1389. }
  1390. }
  1391. }
  1392. return ge::SUCCESS;
  1393. }
  1394. bool GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcessDirectly(
  1395. const NodePtr &input_continuous_node, map<NodePtr, uint32_t> &node_2_continuous_type) {
  1396. for (const auto &in_node : input_continuous_node->GetInDataNodes()) {
  1397. if (in_node->GetType() == VARIABLE) {
  1398. GELOGI("node %s 's precursor node %s is variable, do not store.", input_continuous_node->GetName().c_str(),
  1399. in_node->GetName().c_str());
  1400. return true;
  1401. }
  1402. auto iter = node_2_continuous_type.find(in_node);
  1403. // In node's topo order in the front, so function can not be exception
  1404. auto continuous_type = iter->second;
  1405. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1406. if (continuous_input) {
  1407. GELOGI("Node %s 's precursor node %s need assign continuous input memory, store node firstly.",
  1408. input_continuous_node->GetName().c_str(), in_node->GetName().c_str());
  1409. return false;
  1410. }
  1411. }
  1412. for (const auto &out_node : input_continuous_node->GetOutDataNodes()) {
  1413. auto continuous_type = GetContinuousMemoryType(out_node->GetOpDesc());
  1414. node_2_continuous_type.emplace(out_node, continuous_type);
  1415. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1416. if (continuous_input) {
  1417. GELOGI("Node %s 's succeed node %s need assign continuous input memory, store node firstly.",
  1418. input_continuous_node->GetName().c_str(), out_node->GetName().c_str());
  1419. return false;
  1420. }
  1421. }
  1422. return true;
  1423. }
  1424. ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(const NodePtr &input_continuous_node,
  1425. uint32_t continuous_type,
  1426. bool reverse_refresh) {
  1427. int64_t mem_clean_start = 0;
  1428. int64_t mem_clean_size = 0;
  1429. int64_t memory_type = RT_MEMORY_HBM;
  1430. GE_CHK_STATUS_RET(GetNodeMemoryType(input_continuous_node, memory_type, "input"), "Get node memory type failed.");
  1431. auto ret = AssignContinuousInputMemory(input_continuous_node, mem_clean_start, mem_clean_size, memory_type,
  1432. continuous_type, reverse_refresh);
  1433. if (ret != ge::SUCCESS) {
  1434. GELOGE(ret, "Assign continuous input memory failed!");
  1435. return ret;
  1436. }
  1437. // Clean up atomic address, eg, hcom node
  1438. vector<int32_t> input_indexes;
  1439. // If GetListInt fail, input_indexes is empty.
  1440. (void)ge::AttrUtils::GetListInt(input_continuous_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, input_indexes);
  1441. if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) {
  1442. // check whether there is an atomic conflict between the current node and the peer out node
  1443. if (!CheckInputIsSupportAtomic(input_continuous_node)) {
  1444. GELOGE(ge::FAILED, "There is an atomic conflict between the current node and the peer out node, not supported!");
  1445. return ge::FAILED;
  1446. }
  1447. const auto &in_control_anchor = input_continuous_node->GetInControlAnchor();
  1448. GE_CHECK_NOTNULL(in_control_anchor);
  1449. for (const auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1450. GE_CHECK_NOTNULL(peer_out_control_anchor);
  1451. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1452. if (peer_out_node->GetType() == ATOMICADDRCLEAN) {
  1453. ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size}, memory_type);
  1454. if (ret != SUCCESS) {
  1455. GELOGE(ret, "Failed to set attr for atomic addr clean node %s.", peer_out_node->GetName().c_str());
  1456. return ret;
  1457. }
  1458. }
  1459. }
  1460. }
  1461. return ge::SUCCESS;
  1462. }
  1463. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示