You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

runtime_model.cc 17 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "ge_runtime/runtime_model.h"
  17. #include <set>
  18. #include "./model_context.h"
  19. #include "./task/task.h"
  20. #include "common/ge_inner_error_codes.h"
  21. #include "common/types.h"
  22. #include "common/util.h"
  23. #include "framework/common/debug/ge_log.h"
  24. #include "framework/common/op/op_parser_util.h"
  25. #include "graph/types.h"
  26. #include "task/task_factory.h"
  27. namespace ge {
  28. namespace model_runner {
  29. const int kOffsetUnit = 8;
  30. RuntimeModel::~RuntimeModel() {
  31. GELOGI("RuntimeModel destructor start");
  32. // Unbind rtModel from all task related streams
  33. RtModelUnbindStream();
  34. // Release task first, hccl task hold stream
  35. task_list_.clear();
  36. // Release all task related streams
  37. RtStreamDestory();
  38. // Release rtlabel resource
  39. RtLabelDestory();
  40. // Release rtEvent resourece
  41. RtEventDestory();
  42. GELOGI("Do RtModelDestory");
  43. // Release all rt_model
  44. RtModelDestory();
  45. }
  46. bool RuntimeModel::InitStream(std::shared_ptr<DavinciModel> &davinci_model) {
  47. if (davinci_model == nullptr) {
  48. GELOGE(PARAM_INVALID, "Davinci model is null.");
  49. return false;
  50. }
  51. std::set<int64_t> wait_active_streams;
  52. std::set<int64_t> force_copy_streams;
  53. for (const auto &stream_id : davinci_model->GetWaitActiveStreams()) {
  54. GELOGI("stream id %u is wait active stream.", stream_id);
  55. (void)wait_active_streams.insert(stream_id);
  56. }
  57. for (const auto &stream_id : davinci_model->GetForceCopyStreams()) {
  58. GELOGI("stream id %u is force copy stream.", stream_id);
  59. (void)force_copy_streams.insert(stream_id);
  60. }
  61. GELOGI("stream number:%u", davinci_model->GetStreamNum());
  62. for (uint32_t i = 0; i < davinci_model->GetStreamNum(); ++i) {
  63. rtStream_t stream = nullptr;
  64. uint32_t flag = (force_copy_streams.find(i) != force_copy_streams.end())
  65. ? (RT_STREAM_PERSISTENT | RT_STREAM_FORCE_COPY)
  66. : (RT_STREAM_PERSISTENT);
  67. rtError_t rt_ret = rtStreamCreateWithFlags(&stream, davinci_model->GetPriority(), flag);
  68. if (rt_ret != RT_ERROR_NONE) {
  69. GELOGE(RT_FAILED, "Call rt api rtStreamCreate failed, ret: 0x%X", rt_ret);
  70. return false;
  71. }
  72. GELOGI("rtStreamCreateWithFlags end.");
  73. stream_list_.emplace_back(stream);
  74. // Bind rt_model_handle_ to all task related streams
  75. flag = (wait_active_streams.find(i) != wait_active_streams.end()) ? (static_cast<uint32_t>(RT_INVALID_FLAG))
  76. : (static_cast<uint32_t>(RT_HEAD_STREAM));
  77. rt_ret = rtModelBindStream(rt_model_handle_, stream, flag);
  78. if (rt_ret != RT_ERROR_NONE) {
  79. GELOGE(RT_FAILED, "Call rt api rtModelBindStream failed, ret: 0x%X", rt_ret);
  80. return false;
  81. }
  82. GELOGI("stream index:%u, stream:%p.", i, stream);
  83. }
  84. return true;
  85. }
  86. bool RuntimeModel::InitEvent(uint32_t event_num) {
  87. GELOGI("event number:%u.", event_num);
  88. for (uint32_t i = 0; i < event_num; ++i) {
  89. rtEvent_t rt_event;
  90. rtError_t rt_ret = rtEventCreate(&rt_event);
  91. if (rt_ret != RT_ERROR_NONE) {
  92. GELOGE(RT_FAILED, "Call rt api rtEventCreate failed, i; %u; ret: 0x%X", i, rt_ret);
  93. return false;
  94. }
  95. event_list_.push_back(rt_event);
  96. }
  97. return true;
  98. }
  99. bool RuntimeModel::InitLabel(std::shared_ptr<DavinciModel> &davinci_model) {
  100. GELOGI("batch number:%u.", davinci_model->GetBatchNum());
  101. label_list_.resize(davinci_model->GetBatchNum());
  102. for (auto &task_info : davinci_model->GetTaskInfoList()) {
  103. if (task_info == nullptr) {
  104. GELOGE(PARAM_INVALID, "task_info is null.");
  105. continue;
  106. }
  107. if (task_info->type() != TaskInfoType::LABEL_SET) {
  108. continue;
  109. }
  110. auto label_set_task_info = std::static_pointer_cast<LabelSetTaskInfo>(task_info);
  111. if (label_set_task_info->stream_id() >= stream_list_.size()) {
  112. GELOGE(PARAM_INVALID, "Invalid stream id.");
  113. return false;
  114. }
  115. rtLabel_t rt_label = nullptr;
  116. rtError_t rt_ret = rtLabelCreateEx(&rt_label, stream_list_[label_set_task_info->stream_id()]);
  117. if (rt_ret != RT_ERROR_NONE) {
  118. GELOGE(RT_FAILED, "Call rt api rtLabelCreate failed, ret: 0x%X", rt_ret);
  119. return false;
  120. }
  121. label_list_[label_set_task_info->label_id()] = rt_label;
  122. }
  123. return true;
  124. }
  125. bool RuntimeModel::InitResource(std::shared_ptr<DavinciModel> &davinci_model) {
  126. GELOGI("InitResource start");
  127. if (davinci_model == nullptr) {
  128. GELOGE(PARAM_INVALID, "davinci model is null");
  129. return false;
  130. }
  131. rtError_t rt_ret = rtModelCreate(&rt_model_handle_, 0);
  132. if (rt_ret != RT_ERROR_NONE) {
  133. GELOGE(RT_FAILED, "Call rt api rtModelCreate failed, ret: 0x%X", rt_ret);
  134. return false;
  135. }
  136. // Create rtStream for rt_model_handle_
  137. rt_ret = rtStreamCreate(&rt_model_stream_, davinci_model->GetPriority());
  138. if (rt_ret != RT_ERROR_NONE) {
  139. GELOGE(RT_FAILED, "Call rt api rtStreamCreate failed, ret: 0x%X", rt_ret);
  140. return false;
  141. }
  142. GELOGI("rtStreamCreate end");
  143. if (!InitStream(davinci_model)) {
  144. return false;
  145. }
  146. if (!InitEvent(davinci_model->GetEventNum())) {
  147. return false;
  148. }
  149. if (!InitLabel(davinci_model)) {
  150. return false;
  151. }
  152. GELOGI("InitResource succ");
  153. return true;
  154. }
  155. void RuntimeModel::GenerateTask(uint32_t device_id, uint64_t session_id, std::shared_ptr<DavinciModel> &davinci_model) {
  156. GELOGI("GenerateTask start.");
  157. if (davinci_model == nullptr) {
  158. GELOGE(PARAM_INVALID, "davinci model is null");
  159. return;
  160. }
  161. auto task_infos = davinci_model->GetTaskInfoList();
  162. ModelContext model_context(device_id, session_id, davinci_model->GetPriority(), rt_model_handle_, rt_model_stream_,
  163. stream_list_, label_list_, event_list_);
  164. for (auto &task_info : task_infos) {
  165. auto task = TaskFactory::GetInstance().Create(model_context, task_info);
  166. task_list_.push_back(task);
  167. }
  168. GELOGI("GenerateTask succ.");
  169. }
  170. bool RuntimeModel::LoadTask() {
  171. GELOGI("LoadTask start.");
  172. for (auto &task : task_list_) {
  173. if (task == nullptr) {
  174. GELOGE(PARAM_INVALID, "task is null.");
  175. continue;
  176. }
  177. bool ret = task->Distribute();
  178. if (!ret) {
  179. GELOGE(FAILED, "task distribute fail.");
  180. return false;
  181. }
  182. uint32_t task_id = 0;
  183. uint32_t stream_id = 0;
  184. rtError_t rt_ret = rtModelGetTaskId(rt_model_handle_, &task_id, &stream_id);
  185. if (rt_ret != RT_ERROR_NONE) {
  186. GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X.", rt_ret);
  187. return false;
  188. }
  189. task_id_list_.push_back(task_id);
  190. stream_id_list_.push_back(stream_id);
  191. if (task->Args() != nullptr) {
  192. std::shared_ptr<RuntimeInfo> runtime_tuple = nullptr;
  193. GE_MAKE_SHARED(runtime_tuple = std::make_shared<RuntimeInfo>(task_id, stream_id, task->Args()), return false);
  194. auto emplace_ret = runtime_info_map_.emplace(task->task_name(), runtime_tuple);
  195. if (!emplace_ret.second) {
  196. GELOGW("Task name exist:%s", task->task_name().c_str());
  197. }
  198. }
  199. }
  200. if (task_list_.empty()) {
  201. GELOGE(FAILED, "Task list is empty");
  202. return false;
  203. }
  204. GELOGI("LoadTask succ.");
  205. return true;
  206. }
  207. bool RuntimeModel::LoadComplete() {
  208. uint32_t task_id = 0;
  209. uint32_t stream_id = 0;
  210. auto rt_ret = rtModelGetTaskId(rt_model_handle_, &task_id, &stream_id);
  211. if (rt_ret != RT_ERROR_NONE) {
  212. GELOGE(RT_FAILED, "Call rtModelGetTaskId failed, ret:0x%X", rt_ret);
  213. return RT_FAILED;
  214. }
  215. task_id_list_.push_back(task_id);
  216. stream_id_list_.push_back(stream_id);
  217. rt_ret = rtModelLoadComplete(rt_model_handle_);
  218. if (rt_ret != RT_ERROR_NONE) {
  219. GELOGE(RT_FAILED, "Call rt api rtModelLoadComplete failed, ret: 0x%X.", rt_ret);
  220. return false;
  221. }
  222. return true;
  223. }
  224. bool RuntimeModel::Load(uint32_t device_id, uint64_t session_id, std::shared_ptr<DavinciModel> &davinci_model) {
  225. bool status = InitResource(davinci_model);
  226. if (!status) {
  227. GELOGE(FAILED, "InitResource failed.");
  228. return status;
  229. }
  230. status = InitDataInfo(davinci_model);
  231. if (!status) {
  232. GELOGE(FAILED, "InitDataInfo failed.");
  233. return status;
  234. }
  235. status = InitOutputInfo(davinci_model);
  236. if (!status) {
  237. GELOGE(FAILED, "InitOutputInfo failed.");
  238. return status;
  239. }
  240. status = InitConstantInfo(davinci_model);
  241. if (!status) {
  242. GELOGE(FAILED, "InitConstantInfo failed.");
  243. return status;
  244. }
  245. GenerateTask(device_id, session_id, davinci_model);
  246. return status;
  247. }
  248. bool RuntimeModel::DistributeTask() {
  249. bool status = LoadTask();
  250. if (!status) {
  251. GELOGE(FAILED, "DistributeTask failed");
  252. return false;
  253. }
  254. return true;
  255. }
  256. bool RuntimeModel::Run() {
  257. GELOGI("Davinci task run start");
  258. rtError_t ret = rtModelExecute(rt_model_handle_, rt_model_stream_, 0);
  259. if (ret != RT_ERROR_NONE) {
  260. GELOGE(RT_FAILED, "Model execute failed, ret = 0x%X", ret);
  261. return false;
  262. }
  263. GELOGI("Run rtModelExecute success, ret = 0x%X", ret);
  264. ret = rtStreamSynchronize(rt_model_stream_);
  265. if (ret != RT_ERROR_NONE) {
  266. if (ret == ACL_ERROR_RT_END_OF_SEQUENCE) {
  267. GELOGI("Model stream ACL_ERROR_RT_END_OF_SEQUENCE signal received, ret = 0x%X", ret);
  268. return true;
  269. }
  270. GELOGE(RT_FAILED, "Model stream sync failed, ret = 0x%X", ret);
  271. return false;
  272. }
  273. GELOGI("Davinci task run succ.");
  274. return true;
  275. }
  276. void RuntimeModel::RtModelUnbindStream() noexcept {
  277. for (size_t i = 0; i < stream_list_.size(); i++) {
  278. if (rtModelUnbindStream(rt_model_handle_, stream_list_[i]) != RT_ERROR_NONE) {
  279. GELOGE(RT_FAILED, "Unbind stream from model failed! Index: %zu", i);
  280. return;
  281. }
  282. }
  283. }
  284. void RuntimeModel::RtStreamDestory() noexcept {
  285. if (rtStreamDestroy(rt_model_stream_) != RT_ERROR_NONE) {
  286. GELOGE(RT_FAILED, "Destroy stream for rt_model failed!");
  287. return;
  288. }
  289. for (size_t i = 0; i < stream_list_.size(); i++) {
  290. if (rtStreamDestroy(stream_list_[i]) != RT_ERROR_NONE) {
  291. GELOGE(RT_FAILED, "Destroy stream failed! Index: %zu", i);
  292. return;
  293. }
  294. }
  295. }
  296. void RuntimeModel::RtLabelDestory() noexcept {
  297. for (size_t i = 0; i < label_list_.size(); i++) {
  298. if (label_list_[i] == nullptr) {
  299. continue;
  300. }
  301. if (rtLabelDestroy(label_list_[i]) != RT_ERROR_NONE) {
  302. GELOGE(RT_FAILED, "Destroy label failed! Index: %zu.", i);
  303. return;
  304. }
  305. }
  306. }
  307. void RuntimeModel::RtModelDestory() noexcept {
  308. rtError_t ret = rtModelDestroy(rt_model_handle_);
  309. if (ret != RT_ERROR_NONE) {
  310. GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", ret);
  311. return;
  312. }
  313. }
  314. void RuntimeModel::RtEventDestory() noexcept {
  315. for (size_t i = 0; i < event_list_.size(); i++) {
  316. if (rtEventDestroy(event_list_[i]) != RT_ERROR_NONE) {
  317. GELOGE(RT_FAILED, "Destroy event failed! Index: %zu", i);
  318. return;
  319. }
  320. }
  321. }
  322. bool RuntimeModel::InitDataInfo(std::shared_ptr<DavinciModel> &davinci_model) { return true; }
  323. bool RuntimeModel::InitOutputInfo(std::shared_ptr<DavinciModel> &davinci_model) {
  324. if (davinci_model == nullptr) {
  325. GELOGE(PARAM_INVALID, "davinci model is null");
  326. return false;
  327. }
  328. output_info_list_ = davinci_model->GetOutputInfoList();
  329. return true;
  330. }
  331. bool RuntimeModel::CopyInputData(const InputData &input_data) {
  332. if (input_data.blobs.size() != data_info_list_.size()) {
  333. GELOGE(PARAM_INVALID, "The input data list size (%zu) does not match the model input list size (%zu)",
  334. input_data.blobs.size(), data_info_list_.size());
  335. return false;
  336. }
  337. for (const auto &data_info : data_info_list_) {
  338. if (data_info == nullptr) {
  339. GELOGE(PARAM_INVALID, "data info is null.");
  340. return false;
  341. }
  342. bool ret = CopyInputDataToModel(input_data.blobs, data_info);
  343. if (!ret) {
  344. GELOGE(FAILED, "Copy input data to model ret fail, data_info: %s, model id: %u", data_info->name.c_str(),
  345. input_data.model_id);
  346. return false;
  347. }
  348. }
  349. return true;
  350. }
  351. bool RuntimeModel::CopyInputDataToModel(const std::vector<DataBuffer> &data, const std::shared_ptr<OpInfo> &data_info) {
  352. return true;
  353. }
  354. bool RuntimeModel::CopyHostData(const std::vector<DataBuffer> &data, const std::shared_ptr<OpInfo> &data_info) const {
  355. GELOGI("Start CopyHostData.");
  356. if (data.empty()) {
  357. GELOGE(PARAM_INVALID, "data buffer is empty.");
  358. return false;
  359. }
  360. if (data_info == nullptr) {
  361. GELOGE(PARAM_INVALID, "data info is null.");
  362. return false;
  363. }
  364. void *host_data_addr = data[data_info->index].data;
  365. uint32_t copy_size = data[data_info->index].length;
  366. GELOGD("data output tensor is aipp tensor,copy data only.");
  367. const std::vector<uintptr_t> &outputs = data_info->output_addrs;
  368. if (outputs.empty()) {
  369. GELOGE(PARAM_INVALID, "Output addrs is empty.");
  370. return false;
  371. }
  372. // Copy input data to data nodes
  373. void *data_out_addr = reinterpret_cast<void *>(outputs[0]);
  374. rtError_t rt_ret = rtMemcpy(data_out_addr, copy_size, host_data_addr, copy_size, RT_MEMCPY_HOST_TO_DEVICE);
  375. if (rt_ret != RT_ERROR_NONE) {
  376. GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
  377. return false;
  378. }
  379. return true;
  380. }
  381. bool RuntimeModel::CopyTransData(const std::vector<DataBuffer> &data, const std::shared_ptr<OpInfo> &data_info) {
  382. return true;
  383. }
  384. bool RuntimeModel::InitConstantInfo(std::shared_ptr<DavinciModel> &davinci_model) {
  385. // Const no input, only 1 output, and this output has no data
  386. // weight data copy to output mem
  387. if (davinci_model == nullptr) {
  388. GELOGE(PARAM_INVALID, "Davinci model is null.");
  389. return false;
  390. }
  391. constant_info_list_ = davinci_model->GetConstantInfoList();
  392. for (const auto &constant : constant_info_list_) {
  393. if (constant == nullptr) {
  394. GELOGE(PARAM_INVALID, "constant is null");
  395. continue;
  396. }
  397. if (constant->output_tensors.empty()) {
  398. GELOGE(PARAM_INVALID, "Output tensors is empty");
  399. return false;
  400. }
  401. if (constant->weight_tensors.empty()) {
  402. GELOGE(PARAM_INVALID, "Weight tensors is empty");
  403. return false;
  404. }
  405. if (constant->output_tensors[0].size < constant->weight_data.size()) {
  406. GELOGE(PARAM_INVALID, "Output size:%u is less than weight data size:%zu", constant->output_tensors[0].size,
  407. constant->weight_data.size());
  408. return false;
  409. }
  410. if (constant->weight_data.empty()) {
  411. GELOGW("Const op:%s has no weight data.", constant->name.c_str());
  412. continue;
  413. }
  414. if (constant->weight_tensors[0].datatype == DT_STRING) {
  415. /// If tensor is a scaler, it's shape size if zero, according ge_tensor.cc.
  416. /// The logic of GetShapeSize is wrong, the scaler tensor's GetShapeSize is zero
  417. /// and that of unknown shape is zero too.
  418. /// Unknown shape will not appear here, so we can use zero judge a tensor is scaler or not.
  419. int64_t elem_num =
  420. (constant->weight_tensors[0].GetShapeSize() == 0) ? 1 : constant->weight_tensors[0].GetShapeSize();
  421. if (constant->weight_data.size() < sizeof(uint64_t)) {
  422. GELOGE(FAILED, "weight_data size is smaller than sizeof(uint64_t)");
  423. return false;
  424. }
  425. uint64_t *buff = reinterpret_cast<uint64_t *>(const_cast<char *>(constant->weight_data.data()));
  426. int64_t offset = elem_num * kOffsetUnit;
  427. uintptr_t hbm_raw_data_base_addr = reinterpret_cast<uintptr_t>(constant->output_addrs[0]) + offset;
  428. for (int64_t i = elem_num - 1; i >= 0; --i) {
  429. buff[i] = hbm_raw_data_base_addr + (buff[i] - buff[0]);
  430. }
  431. }
  432. rtError_t rt_ret = rtMemcpy(reinterpret_cast<void *>(constant->output_addrs[0]), constant->output_tensors[0].size,
  433. constant->weight_data.data(), constant->weight_data.size(), RT_MEMCPY_HOST_TO_DEVICE);
  434. if (rt_ret != RT_ERROR_NONE) {
  435. GELOGE(RT_FAILED, "rtGetFunctionByName failed, ret: 0x%X", rt_ret);
  436. return false;
  437. }
  438. }
  439. return true;
  440. }
  441. bool RuntimeModel::GetInputOutputDescInfo(bool zero_copy, std::vector<InputOutputDescInfo> *input_desc,
  442. std::vector<InputOutputDescInfo> *output_desc,
  443. std::vector<uint32_t> *input_format, std::vector<uint32_t> *output_format) {
  444. return true;
  445. }
  446. bool RuntimeModel::GetInputDescInfo(std::vector<InputOutputDescInfo> *input_desc, std::vector<uint32_t> *formats) {
  447. return true;
  448. }
  449. bool RuntimeModel::GetOutputDescInfo(std::vector<InputOutputDescInfo> *output_desc, std::vector<uint32_t> *formats) {
  450. return true;
  451. }
  452. void RuntimeModel::CreateOutput(uint32_t index, const OpInfo &op_info, InputOutputDescInfo *output,
  453. uint32_t *format_result) {}
  454. const std::vector<uint32_t> &RuntimeModel::GetTaskIdList() const { return task_id_list_; }
  455. const std::vector<uint32_t> &RuntimeModel::GetStreamIdList() const { return stream_id_list_; }
  456. } // namespace model_runner
  457. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示