You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

subgraph_executor.cc 21 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/subgraph_executor.h"
  17. #include "graph/ge_context.h"
  18. #include "hybrid/executor/worker/task_compile_engine.h"
  19. #include "hybrid/executor/worker/execution_engine.h"
  20. #include "hybrid/node_executor/node_executor.h"
  21. namespace ge {
  22. namespace hybrid {
  23. namespace {
  24. constexpr int kDefaultThreadNum = 4;
  25. constexpr int kDataInputIndex = 0;
  26. }
  27. SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape)
  28. : graph_item_(graph_item),
  29. context_(context),
  30. force_infer_shape_(force_infer_shape),
  31. pre_run_pool_(kDefaultThreadNum) {
  32. }
  33. SubgraphExecutor::~SubgraphExecutor() {
  34. GELOGD("[%s] SubgraphExecutor destroyed.", graph_item_->GetName().c_str());
  35. }
  36. Status SubgraphExecutor::Init(const std::vector<TensorValue> &inputs,
  37. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  38. subgraph_context_.reset(new(std::nothrow)SubgraphContext(graph_item_, context_));
  39. GE_CHECK_NOTNULL(subgraph_context_);
  40. GE_CHK_STATUS_RET(subgraph_context_->Init(), "[%s] Failed to init subgraph context.", graph_item_->GetName().c_str());
  41. shape_inference_engine_.reset(new(std::nothrow) ShapeInferenceEngine(context_, subgraph_context_.get()));
  42. GE_CHECK_NOTNULL(shape_inference_engine_);
  43. if (graph_item_->IsDynamic()) {
  44. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  45. "[%s] Failed to set inputs.",
  46. graph_item_->GetName().c_str());
  47. } else {
  48. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  49. "[%s] Failed to init subgraph executor for known shape subgraph.",
  50. graph_item_->GetName().c_str());
  51. }
  52. return SUCCESS;
  53. }
  54. Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
  55. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  56. // Number of inputs of parent node should be greater or equal than that of subgraph
  57. auto input_nodes = graph_item_->GetInputNodes();
  58. if (inputs.size() < input_nodes.size()) {
  59. GELOGE(INTERNAL_ERROR, "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  60. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  61. return INTERNAL_ERROR;
  62. }
  63. for (size_t i = 0; i < input_nodes.size(); ++i) {
  64. auto &input_node = input_nodes[i];
  65. if (input_node == nullptr) {
  66. GELOGD("[%s] Input[%zu] is not needed by subgraph, skip it.", graph_item_->GetName().c_str(), i);
  67. continue;
  68. }
  69. auto &input_tensor = inputs[i];
  70. GELOGD("[%s] Set input tensor[%zu] to inputs with index = %d, tensor = %s",
  71. graph_item_->GetName().c_str(),
  72. i,
  73. input_node->input_start,
  74. input_tensor.DebugString().c_str());
  75. GE_CHK_STATUS_RET(subgraph_context_->SetInput(*input_node, kDataInputIndex, input_tensor),
  76. "[%s] Failed to set input tensor[%zu]",
  77. graph_item_->GetName().c_str(),
  78. i);
  79. if (force_infer_shape_ || input_node->is_dynamic) {
  80. GELOGD("[%s] Start to update input[%zu] for subgraph data node.", graph_item_->GetName().c_str(), i);
  81. GE_CHECK_LE(i + 1, input_desc.size());
  82. const auto &tensor_desc = input_desc[i];
  83. GE_CHECK_NOTNULL(tensor_desc);
  84. auto node_state = subgraph_context_->GetOrCreateNodeState(input_node);
  85. GE_CHECK_NOTNULL(node_state);
  86. node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc);
  87. }
  88. }
  89. GELOGD("[%s] Done setting inputs.", graph_item_->GetName().c_str());
  90. return SUCCESS;
  91. }
  92. Status SubgraphExecutor::InitInputsForKnownShape(const std::vector<TensorValue> &inputs) {
  93. auto &input_index_mapping = graph_item_->GetInputIndexMapping();
  94. for (size_t i = 0; i < input_index_mapping.size(); ++i) {
  95. auto &parent_input_index = input_index_mapping[i];
  96. if (static_cast<size_t>(parent_input_index) >= inputs.size()) {
  97. GELOGE(INTERNAL_ERROR,
  98. "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs at lease [%d] inputs",
  99. graph_item_->GetName().c_str(),
  100. inputs.size(),
  101. parent_input_index + 1);
  102. return INTERNAL_ERROR;
  103. }
  104. auto &input_tensor = inputs[parent_input_index];
  105. subgraph_context_->SetInput(static_cast<int>(i), input_tensor);
  106. GELOGD("[%s] Set input tensor[%zu] with inputs with index = %d, tensor = %s",
  107. graph_item_->GetName().c_str(),
  108. i,
  109. parent_input_index,
  110. input_tensor.DebugString().c_str());
  111. }
  112. return SUCCESS;
  113. }
  114. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  115. const std::vector<ConstGeTensorDescPtr> &input_desc,
  116. const std::vector<TensorValue> &outputs) {
  117. GELOGD("[%s] is dynamic = %s", graph_item_->GetName().c_str(), graph_item_->IsDynamic() ? "true" : "false");
  118. GE_CHK_STATUS_RET(Init(inputs, input_desc), "[%s] Failed to init executor.", graph_item_->GetName().c_str());
  119. if (!outputs.empty()) {
  120. GE_CHK_STATUS_RET(EnableOutputZeroCopy(outputs),
  121. "Failed to enable output zero copy by user provided outputs.");
  122. }
  123. if (!graph_item_->IsDynamic()) {
  124. return ExecuteAsyncForKnownShape(inputs);
  125. }
  126. HYBRID_CHK_STATUS_RET(ScheduleTasks(), "[%s] Failed to execute tasks.", graph_item_->GetName().c_str());
  127. GELOGD("[%s] Done executing subgraph successfully.", graph_item_->GetName().c_str());
  128. return SUCCESS;
  129. }
  130. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  131. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  132. return ExecuteAsync(inputs, input_desc, {});
  133. }
  134. Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs) {
  135. GELOGD("[%s] subgraph is not dynamic.", graph_item_->GetName().c_str());
  136. if (graph_item_->GetAllNodes().size() != 1) {
  137. GELOGE(INTERNAL_ERROR,
  138. "[%s] Invalid known shape subgraph. node size = %zu",
  139. graph_item_->GetName().c_str(),
  140. graph_item_->GetAllNodes().size());
  141. return INTERNAL_ERROR;
  142. }
  143. auto node_item = graph_item_->GetAllNodes()[0];
  144. GE_CHECK_NOTNULL(node_item);
  145. auto node_state = subgraph_context_->GetOrCreateNodeState(node_item);
  146. GE_CHECK_NOTNULL(node_state);
  147. node_state->SetKernelTask(node_item->kernel_task);
  148. known_shape_task_context_ = TaskContext::Create(*node_item, context_, subgraph_context_.get());
  149. GE_CHECK_NOTNULL(known_shape_task_context_);
  150. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, known_shape_task_context_, *context_),
  151. "[%s] Failed to execute node [%s] for known subgraph.",
  152. graph_item_->GetName().c_str(),
  153. known_shape_task_context_->GetNodeName());
  154. GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str());
  155. return SUCCESS;
  156. }
  157. Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
  158. std::vector<TensorValue> inputs;
  159. std::vector<ConstGeTensorDescPtr> input_desc;
  160. for (int i = 0; i < task_context.NumInputs(); ++i) {
  161. auto tensor = task_context.GetInput(i);
  162. GE_CHECK_NOTNULL(tensor);
  163. inputs.emplace_back(*tensor);
  164. input_desc.emplace_back(task_context.GetInputDesc(i));
  165. }
  166. GE_CHK_STATUS_RET(ExecuteAsync(inputs, input_desc),
  167. "[%s] Failed to execute subgraph.",
  168. graph_item_->GetName().c_str());
  169. GE_CHK_STATUS_RET(SetOutputsToParentNode(task_context),
  170. "[%s] Failed to set output shapes to parent node.",
  171. graph_item_->GetName().c_str());
  172. return SUCCESS;
  173. }
  174. Status SubgraphExecutor::PrepareNodes() {
  175. GELOGD("[%s] Start to prepare nodes. force infer shape = %s.",
  176. graph_item_->GetName().c_str(),
  177. force_infer_shape_ ? "true" : "false");
  178. auto &all_nodes = graph_item_->GetAllNodes();
  179. for (auto all_node : all_nodes) {
  180. auto &node_item = *all_node;
  181. // for while op
  182. if (force_infer_shape_ && !node_item.is_dynamic) {
  183. GELOGD("[%s] Force infer shape is set, updating node to dynamic.", node_item.NodeName().c_str());
  184. auto &mutable_node_item = const_cast<NodeItem &>(node_item);
  185. mutable_node_item.SetToDynamic();
  186. }
  187. GELOGD("[%s] Start to prepare node [%s].", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
  188. auto node_state = subgraph_context_->GetOrCreateNodeState(&node_item);
  189. GE_CHECK_NOTNULL(node_state);
  190. auto p_node_state = node_state.get();
  191. if (node_item.node_type != NETOUTPUT) {
  192. // only do shape inference and compilation for nodes with dynamic shapes.
  193. if (node_item.is_dynamic) {
  194. auto prepare_future = pre_run_pool_.commit([this, p_node_state]() -> Status {
  195. GetContext().SetSessionId(context_->session_id);
  196. GE_CHK_STATUS_RET_NOLOG(InferShape(shape_inference_engine_.get(), *p_node_state));
  197. return PrepareForExecution(context_, *p_node_state);
  198. });
  199. p_node_state->SetPrepareFuture(std::move(prepare_future));
  200. } else {
  201. GELOGD("[%s] Skipping shape inference and compilation for node with static shape.",
  202. node_item.NodeName().c_str());
  203. if (node_item.kernel_task == nullptr) {
  204. GELOGW("[%s] Node of static shape got no task.", node_item.NodeName().c_str());
  205. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(*p_node_state, context_),
  206. "[%s] Failed to create task.", p_node_state->GetName().c_str());
  207. } else {
  208. node_state->SetKernelTask(node_item.kernel_task);
  209. }
  210. auto unique_task_context = TaskContext::Create(*node_state->GetNodeItem(), context_, subgraph_context_.get());
  211. GE_CHECK_NOTNULL(unique_task_context);
  212. const auto &task = node_state->GetKernelTask();
  213. if (task == nullptr) {
  214. GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state->GetName().c_str());
  215. return INTERNAL_ERROR;
  216. }
  217. auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release());
  218. node_state->SetTaskContext(shared_task_context);
  219. }
  220. }
  221. if (!ready_queue_.Push(p_node_state)) {
  222. if (context_->is_eos_) {
  223. GELOGD("Got end of sequence");
  224. return SUCCESS;
  225. }
  226. GELOGE(INTERNAL_ERROR, "[%s] Error occurs while launching tasks. quit from preparing nodes.",
  227. graph_item_->GetName().c_str());
  228. return INTERNAL_ERROR;
  229. }
  230. GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
  231. }
  232. return SUCCESS;
  233. }
  234. Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) {
  235. const auto &node_item = *node_state.GetNodeItem();
  236. HYBRID_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
  237. "[%s] Failed to InferShape.", node_state.GetName().c_str());
  238. HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_item),
  239. "[%s] Failed to PropagateOutputShapes.", node_state.GetName().c_str());
  240. return SUCCESS;
  241. }
  242. Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state) {
  243. auto &node_item = *node_state.GetNodeItem();
  244. if (node_item.kernel_task == nullptr) {
  245. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(node_state, ctx),
  246. "Failed to create task for node[%s]", node_state.GetName().c_str());
  247. } else {
  248. node_state.SetKernelTask(node_item.kernel_task);
  249. }
  250. auto unique_task_context = TaskContext::Create(*node_state.GetNodeItem(), context_, subgraph_context_.get());
  251. GE_CHECK_NOTNULL(unique_task_context);
  252. const auto &task = node_state.GetKernelTask();
  253. if (task == nullptr) {
  254. GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state.GetName().c_str());
  255. return INTERNAL_ERROR;
  256. }
  257. auto shared_task_context = std::shared_ptr<TaskContext>(unique_task_context.release());
  258. node_state.SetTaskContext(shared_task_context);
  259. GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context));
  260. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start");
  261. GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*shared_task_context)); // update op_desc before alloc ws
  262. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end");
  263. return SUCCESS;
  264. }
  265. Status SubgraphExecutor::LaunchTasks() {
  266. while (true) {
  267. NodeState *node_state = nullptr;
  268. if (!ready_queue_.Pop(node_state)) {
  269. GELOGE(INTERNAL_ERROR, "[%s] Failed to pop node.", graph_item_->GetName().c_str());
  270. return INTERNAL_ERROR;
  271. }
  272. if (node_state == nullptr) {
  273. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  274. return SUCCESS;
  275. }
  276. if (node_state->GetType() == NETOUTPUT) {
  277. // Wait for all inputs become valid
  278. // after PrepareNodes returned. all output tensors and shapes are valid
  279. GE_CHK_STATUS_RET_NOLOG(node_state->GetShapeInferenceState().AwaitShapesReady(*context_));
  280. GE_CHK_STATUS_RET_NOLOG(node_state->AwaitInputTensors(*context_));
  281. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  282. continue;
  283. }
  284. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForPrepareDone());
  285. GELOGD("[%s] Start to execute.", node_state->GetName().c_str());
  286. auto shared_task_context = node_state->GetTaskContext();
  287. GE_CHECK_NOTNULL(shared_task_context);
  288. shared_task_context->SetForceInferShape(force_infer_shape_);
  289. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, shared_task_context, *context_),
  290. "[%s] Execute node failed.",
  291. node_state->GetName().c_str());
  292. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  293. }
  294. }
  295. Status SubgraphExecutor::ScheduleTasks() {
  296. GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
  297. auto prepare_future = std::async(std::launch::async, [&]() -> Status {
  298. GetContext().SetSessionId(context_->session_id);
  299. auto ret = PrepareNodes();
  300. ready_queue_.Push(nullptr);
  301. return ret;
  302. });
  303. GELOGD("[%s] Start to execute subgraph.", graph_item_->GetName().c_str());
  304. auto ret = LaunchTasks();
  305. if (ret != SUCCESS) {
  306. subgraph_context_->OnError(ret);
  307. context_->SetErrorCode(ret);
  308. ready_queue_.Stop();
  309. prepare_future.wait();
  310. return ret;
  311. }
  312. GE_CHK_STATUS_RET(prepare_future.get(),
  313. "[%s] Error occurred in task preparation.",
  314. graph_item_->GetName().c_str());
  315. GELOGD("[%s] Done launching all tasks successfully.", graph_item_->GetName().c_str());
  316. return SUCCESS;
  317. }
  318. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs) {
  319. return subgraph_context_->GetOutputs(outputs);
  320. }
  321. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc) {
  322. GE_CHK_STATUS_RET(GetOutputs(outputs), "[%s] Failed to get output tensors.", graph_item_->GetName().c_str());
  323. // copy output data from op to designated position
  324. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc),
  325. "[%s] Failed to get output tensor desc.",
  326. graph_item_->GetName().c_str());
  327. if (outputs.size() != output_desc.size()) {
  328. GELOGE(INTERNAL_ERROR,
  329. "Number of output tensors(%zu) mismatch number of output tensor desc(%zu).",
  330. outputs.size(),
  331. output_desc.size());
  332. return INTERNAL_ERROR;
  333. }
  334. return SUCCESS;
  335. }
  336. Status SubgraphExecutor::Synchronize() {
  337. GELOGD("[%s] Synchronize start.", graph_item_->GetName().c_str());
  338. GE_CHK_STATUS_RET_NOLOG(context_->Synchronize(context_->stream));
  339. GELOGD("[%s] Done synchronizing successfully.", graph_item_->GetName().c_str());
  340. return SUCCESS;
  341. }
  342. Status SubgraphExecutor::SetOutputsToParentNode(TaskContext &task_context) {
  343. // get output tensors and tensor desc list
  344. std::vector<TensorValue> outputs;
  345. std::vector<ConstGeTensorDescPtr> output_desc_list;
  346. GE_CHK_STATUS_RET(subgraph_context_->GetOutputs(outputs),
  347. "[%s] Failed to get output tensors.",
  348. graph_item_->GetName().c_str());
  349. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc_list),
  350. "[%s] Failed to get output tensor desc.",
  351. graph_item_->GetName().c_str());
  352. if (outputs.size() != output_desc_list.size()) {
  353. GELOGE(INTERNAL_ERROR, "[%s] num output tensors = %zu, num output tensor desc = %zu",
  354. graph_item_->GetName().c_str(),
  355. outputs.size(),
  356. output_desc_list.size());
  357. return INTERNAL_ERROR;
  358. }
  359. // mapping to parent task context
  360. for (size_t i = 0; i < outputs.size(); ++i) {
  361. int parent_output_index = graph_item_->GetParentOutputIndex(i);
  362. GE_CHECK_GE(parent_output_index, 0);
  363. // update tensor
  364. GELOGD("[%s] Updating output[%zu] to parent output[%d]",
  365. graph_item_->GetName().c_str(),
  366. i,
  367. parent_output_index);
  368. GELOGD("[%s] Updating output tensor, index = %d, tensor = %s",
  369. graph_item_->GetName().c_str(),
  370. parent_output_index,
  371. outputs[i].DebugString().c_str());
  372. GE_CHK_STATUS_RET(task_context.SetOutput(parent_output_index, outputs[i]));
  373. // updating shapes. dynamic format/dtype is not supported.
  374. // It should be noted that even the subgraph is of known shape, it is also necessary to update parent output desc,
  375. // for instance, IfOp may have two known-shaped subgraphs of different output shapes
  376. const auto &output_desc = output_desc_list[i];
  377. auto parent_output_desc = task_context.MutableOutputDesc(parent_output_index);
  378. GE_CHECK_NOTNULL(parent_output_desc);
  379. GELOGD("[%s] Updating output shape[%d] from [%s] to [%s]",
  380. graph_item_->GetName().c_str(),
  381. parent_output_index,
  382. parent_output_desc->MutableShape().ToString().c_str(),
  383. output_desc->GetShape().ToString().c_str());
  384. parent_output_desc->SetShape(output_desc->GetShape());
  385. GELOGD("[%s] Updating output original shape[%d] from [%s] to [%s]",
  386. graph_item_->GetName().c_str(),
  387. parent_output_index,
  388. parent_output_desc->GetOriginShape().ToString().c_str(),
  389. output_desc->GetOriginShape().ToString().c_str());
  390. parent_output_desc->SetOriginShape(output_desc->GetOriginShape());
  391. }
  392. return SUCCESS;
  393. }
  394. Status SubgraphExecutor::EnableOutputZeroCopy(const vector<TensorValue> &outputs) {
  395. GELOGD("To enable zero copy, output number = %zu", outputs.size());
  396. const auto &output_edges = graph_item_->GetOutputEdges();
  397. // Op -> MetOutput, set the output tensor of Op that output to the NetOutput node
  398. if (outputs.size() != output_edges.size()) {
  399. GELOGE(PARAM_INVALID, "Output number mismatches, expect = %zu, but given = %zu",
  400. output_edges.size(),
  401. outputs.size());
  402. return PARAM_INVALID;
  403. }
  404. for (size_t i = 0; i < outputs.size(); ++i) {
  405. auto &output_tensor = outputs[i];
  406. auto &output_node = output_edges[i].first;
  407. int output_idx = output_edges[i].second;
  408. GELOGD("[%s] Set output tensor[%zu] to [%s]'s output[%d], tensor = %s",
  409. graph_item_->GetName().c_str(),
  410. i,
  411. output_node->NodeName().c_str(),
  412. output_idx,
  413. output_tensor.DebugString().c_str());
  414. GE_CHK_STATUS_RET(subgraph_context_->SetOutput(*output_node, output_idx, output_tensor),
  415. "[%s] Failed to set input tensor[%zu]",
  416. graph_item_->GetName().c_str(),
  417. i);
  418. }
  419. GELOGD("Done enabling zero copy for outputs successfully.");
  420. return SUCCESS;
  421. }
  422. } // namespace hybrid
  423. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示