|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file matrix_calculation_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_
-
- #include "graph/operator_reg.h"
-
- namespace ge {
- /**
- * @brief Backprop W of AttentionLnQKV + ReduceSumD \n
- * @par Inputs:
- * Four inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16.
- * @li query_dx: A Tensor. Must be one of the following types: float16.
- * @li key_dw: A Tensor. Must be one of the following types: float16.
- * @li value_dw: A Tensor. Must be one of the following types: float16.
-
- * @par Attributes:
- * @li trans_a: A optional attribute, the type is bool. Defaults to True.
- * @li trans_b: A optional attribute, the type is bool. Defaults to False. \n
-
- * @par Outputs:
- * Six outputs, including:
- * @li dw_query: A Tensor. Must be one of the following types: float16.
- * @li dw_key: A Tensor. Must be one of the following types: float16.
- * @li dw_value: A Tensor. Must be one of the following types: float16.
- * @li dbias_query: A Tensor. Must be one of the following types: float16.
- * @li dbias_key: A Tensor. Must be one of the following types: float16.
- * @li dbias_value: A Tensor. Must be one of the following types: float16. \n
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. \n
- */
- REG_OP(AttentionQKVGradW)
- .INPUT(x, TensorType({DT_FLOAT16}))
- .INPUT(query_dx, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(key_dw, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(value_dw, TensorType({DT_FLOAT16}))
- .OUTPUT(dw_query, TensorType({DT_FLOAT16}))
- .OUTPUT(dw_key, TensorType({DT_FLOAT16}))
- .OUTPUT(dw_value, TensorType({DT_FLOAT16}))
- .OUTPUT(dbias_query, TensorType({DT_FLOAT16}))
- .OUTPUT(dbias_key, TensorType({DT_FLOAT16}))
- .OUTPUT(dbias_value, TensorType({DT_FLOAT16}))
- .ATTR(trans_a, Bool, true)
- .ATTR(trans_b, Bool, false)
- .OP_END_FACTORY_REG(AttentionQKVGradW)
-
- /**
- * @brief Backprop X of AttentionLnQKV + AddN \n
- * @par Inputs:
- * Seven inputs, including:
- * @li ln_dx: A Tensor. Must be one of the following types: float16.
- * @li query_dx: A Tensor. Must be one of the following types: float16.
- * @li key_dw: A Tensor. Must be one of the following types: float16.
- * @li value_dw: A Tensor. Must be one of the following types: float16.
- * @li kernel_query: A Tensor. Must be one of the following types: float16.
- * @li kernel_key: A Tensor. Must be one of the following types: float16.
- * @li kernel_value: A Tensor. Must be one of the following types: float16. \n
-
- * @par Attributes:
- * @li trans_a: A optional attribute, the type is bool. Defaults to False.
- * @li trans_b: A optional attribute, the type is bool. Defaults to True. \n
-
- * @par Outputs:
- * One outputs, including:
- * @li dx: A Tensor. Must be one of the following types: float16. \n
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. \n
- */
- REG_OP(AttentionQKVGradX)
- .INPUT(ln_dx, TensorType({DT_FLOAT16}))
- .INPUT(query_dx, TensorType({DT_FLOAT16}))
- .INPUT(key_dw, TensorType({DT_FLOAT16}))
- .INPUT(value_dw, TensorType({DT_FLOAT16}))
- .INPUT(kernel_query, TensorType({DT_FLOAT16}))
- .INPUT(kernel_key, TensorType({DT_FLOAT16}))
- .INPUT(kernel_value, TensorType({DT_FLOAT16}))
- .OUTPUT(dx, TensorType({DT_FLOAT16}))
- .ATTR(trans_a, Bool, false)
- .ATTR(trans_b, Bool, true)
- .OP_END_FACTORY_REG(AttentionQKVGradX)
-
- /**
- * @brief
- / (MatMul -> ConfusionTransposeD).
- LayerNorm - (MatMul -> ConfusionTransposeD).
- \ (MatMul -> ConfusionTransposeD). \n
- * @par Inputs:
- * Nine inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16.
- * @li kernel_query: A Tensor. Must be one of the following types: float16.
- * @li kernel_key: A Tensor. Must be one of the following types: float16.
- * @li kernel_value: A Tensor. Must be one of the following types: float16.
- * @li gamma: A Tensor. Must be one of the following types: float16.
- * @li beta: A Tensor. Must be one of the following types: float16.
- * @li bias_query: A Tensor. Must be one of the following types: float16.
- * @li bias_key: A Tensor. Must be one of the following types: float16.
- * @li bias_value: A Tensor. Must be one of the following types: float16. \n
-
- * @par Attributes:
- * @li epsilon: A optional attribute, the type is float32. Defaults to 1e-7.
- * @li trans_a: A optional attribute, the type is bool. Defaults to False.
- * @li trans_b: A optional attribute, the type is bool. Defaults to False. \n
-
- * @par Outputs:
- * Six outputs, including:
- * @li norm: A Tensor. Must be one of the following types: float16.
- * @li query_output: A Tensor. Must be one of the following types: float16.
- * @li key_output: A Tensor. Must be one of the following types: float16.
- * @li value_output: A Tensor. Must be one of the following types: float16.
- * @li mean: A Tensor. Must be one of the following types: float16.
- * @li variance: A Tensor. Must be one of the following types: float16. \n
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. \n
- */
- REG_OP(AttentionLnQKV)
- .INPUT(x, TensorType({DT_FLOAT16}))
- .INPUT(kernel_query, TensorType({DT_FLOAT16}))
- .INPUT(kernel_key, TensorType({DT_FLOAT16}))
- .INPUT(kernel_value, TensorType({DT_FLOAT16}))
- .INPUT(gamma, TensorType({DT_FLOAT16}))
- .INPUT(beta, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(bias_query, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(bias_key, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(bias_value, TensorType({DT_FLOAT16}))
- .OUTPUT(norm, TensorType({DT_FLOAT16}))
- .OUTPUT(query_output, TensorType({DT_FLOAT16}))
- .OUTPUT(key_output, TensorType({DT_FLOAT16}))
- .OUTPUT(value_output, TensorType({DT_FLOAT16}))
- .OUTPUT(mean, TensorType({DT_FLOAT16}))
- .OUTPUT(variance, TensorType({DT_FLOAT16}))
- .ATTR(epsilon, Float, 0.0000001)
- .ATTR(trans_a, Bool, false)
- .ATTR(trans_b, Bool, false)
- .OP_END_FACTORY_REG(AttentionLnQKV)
-
- /**
- * @brief
- swin_transformer model specific structure.Operator only supports swin_transformer. \n
- * @par Inputs:
- * Five inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16.
- * @li gamma: A Tensor. Must be one of the following types: float16.
- * @li beta: A Tensor. Must be one of the following types: float16.
- * @li weight: A Tensor. Must be one of the following types: float16.
- * @li bias: A Tensor. Must be one of the following types: float16. \n
-
- * @par Attributes:
- * @li head_num: A optional attribute, the type is int.
- * @li head_dim: A optional attribute, the type is int.
- * @li seq_length: A optional attribute, the type is int.
- * @li shifts: A optional attribute, the type is list int. Defaults to ().
- * @li epsilon: A optional attribute, the type is float. Defaults to 1e-7. \n
-
- * @par Outputs:
- * Three outputs, including:
- * @li query_output: A Tensor. Must be one of the following types: float16.
- * @li key_output: A Tensor. Must be one of the following types: float16.
- * @li value_output: A Tensor. Must be one of the following types: float16. \n
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. \n
- */
- REG_OP(SwinTransformerLnQKV)
- .INPUT(x, TensorType({DT_FLOAT16}))
- .INPUT(gamma, TensorType({DT_FLOAT16}))
- .INPUT(beta, TensorType({DT_FLOAT16}))
- .INPUT(weight, TensorType({DT_FLOAT16}))
- .INPUT(bias, TensorType({DT_FLOAT16}))
- .OUTPUT(query_output, TensorType({DT_FLOAT16}))
- .OUTPUT(key_output, TensorType({DT_FLOAT16}))
- .OUTPUT(value_output, TensorType({DT_FLOAT16}))
- .REQUIRED_ATTR(head_num, Int)
- .REQUIRED_ATTR(head_dim, Int)
- .REQUIRED_ATTR(seq_length, Int)
- .ATTR(shifts, ListInt, {})
- .ATTR(epsilon, Float, 0.0000001)
- .OP_END_FACTORY_REG(SwinTransformerLnQKV)
-
- /**
- * @brief Multiplies matrix "a" by matrix "b", producing "a * b". \n
- * @par Inputs:
- * Three inputs, including:
- * @li x1: A matrix Tensor. 2D. Must be one of the following types: float16,
- * float32, int32. Has format [ND, NHWC].
- * @li x2: A matrix Tensor. 2D. Must be one of the following types: float16,
- * float32, int32. Has format [ND, NHWC].
- * @li bias: A optional 1D Tensor. Must be one of the following types: float16,
- * float32, int32. Has format [ND, NHWC]. \n
-
- * @par Attributes:
- * @li transpose_x1: A bool. If True, changes the shape of "x1" from [K, M] to
- * [M, K] before multiplication.
- * @li transpose_x2: A bool. If True, changes the shape of "x2" from [N, K] to
- * [K, N] before multiplication. \n
-
- * @par Outputs:
- * y: The result matrix Tensor. 2D. Must be one of the following types: float16,
- * float32, int32. Has format [ND, NHWC]. \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator BatchMatmul.
- */
- REG_OP(MatMul)
- .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .ATTR(transpose_x1, Bool, false)
- .ATTR(transpose_x2, Bool, false)
- .OP_END_FACTORY_REG(MatMul)
-
- /**
- * @brief Multiplies matrix "a" by matrix "b", producing "a * b". \n
- * @par Inputs:
- * Four inputs, including:
- * @li x1: A matrix Tensor. 2D. Must be one of the following types: float32,
- * float16, int32, int8, int4. Has format [ND, NHWC].
- * @li x2: A matrix Tensor. 2D. Must be one of the following types: float32,
- * float16, int32, int8, int4. Has format [ND, NHWC].
- * @li bias: A 1D Tensor. Must be one of the following types: float32,
- * float16, int32. Has format [ND, NHWC].
- * @li offset_w: A Optional 1D Tensor for quantized inference. Type is int8, int4.
- * Reserved. \n
-
- * @par Attributes:
- * @li transpose_x1: A bool. If True, changes the shape of "x1" from [K, M] to
- * [M, K] before multiplication.
- * @li transpose_x2: A bool. If True, changes the shape of "x2" from [N, K] to
- * [K, N] before multiplication.
- * @li offset_x: An optional integer for quantized MatMulV2.
- * The negative offset added to the input x1 for int8 type. Ensure offset_x
- * within the effective range of int8 [-128, 127]. Defaults to "0". \n
-
- * @par Outputs:
- * y: The result matrix Tensor. 2D. Must be one of the following types: float32,
- * float16, int32. Has format [ND, NHWC]. \n
-
- * @attention Constraints:
- * if performances better in format NZ, please close
- * "MatmulTransdataFusionPass" in fusion configuration. \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator BatchMatmul.
- */
- REG_OP(MatMulV2)
- .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_INT4, DT_BF16}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_INT4, DT_BF16}))
- .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8, DT_INT4}))
- .ATTR(transpose_x1, Bool, false)
- .ATTR(transpose_x2, Bool, false)
- .ATTR(offset_x, Int, 0)
- .OP_END_FACTORY_REG(MatMulV2)
-
- /**
- * @brief Multiplies matrix "a" by matrix "b", producing "a * b". \n
- * @par Inputs:
- * Five inputs, including:
- * @li x1: A matrix Tensor. 2D. Must be one of the following types: int8.
- * @li x2: A matrix Tensor. 2D. Must be one of the following types: int8.
- * @li compress_index: A compress index matrix of type int8.
- * @li bias: An optional Tensor. 1D. Must be one of the following types: int32,
- * float16.
- * @li offset_w: An optional matrix Tensor. 2D. Must be one of the following
- * types: int8. \n
-
- * @par Attributes:
- * @li transpose_x1: A bool. If True, changes the shape of "x1" from [K, M] to
- * [M, K] before multiplication.
- * @li transpose_x2: A bool. If True, changes the shape of "x2" from [N, K] to
- * [K, N] before multiplication.
- * @li offset_x: An optional integer for quantized MatMulV2Compress.
- * The negative offset added to the input x1 for int8 type. Ensure offset_x
- * within the effective range of int8 [-128, 127]. Defaults to "0". \n
-
- * @par Outputs:
- * y: The result matrix Tensor. 2D. Must be one of the following types: int32,
- * float16. \n
-
- * @attention Constraints:
- * if performances better in format NZ, please close
- * "MatmulTransdataFusionPass" in fusion configuration.
-
- */
- REG_OP(MatMulV2Compress)
- .INPUT(x1, TensorType({DT_INT8}))
- .INPUT(x2, TensorType({DT_INT8}))
- .INPUT(compress_index, TensorType({DT_INT8}))
- .OPTIONAL_INPUT(bias, TensorType({DT_INT32, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_INT32, DT_FLOAT16}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
- .ATTR(transpose_x1, Bool, false)
- .ATTR(transpose_x2, Bool, false)
- .ATTR(offset_x, Int, 0)
- .OP_END_FACTORY_REG(MatMulV2Compress)
-
- /**
- * @brief Performs Matrix-to-matrix Multiply,
- * producing y=alpha[0]*a*b+beta[0]*c. \n
- * @attention Constraints:
- * For better performance, The k-axis must be aligned to 16 (input type
- * is float16) or 32 (input type is int8). \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li a: A matrix Tensor. Must be one of the following types:float32, float16,
- * int8, int32. Has format ND.
- * @li b: A matrix Tensor. Must be one of the following types:float32, float16,
- * int8, int32. Has format ND.
- * @li c: A matrix Tensor. Must be one of the following types:float32, float16,
- * int8, int32. Has format ND.
- * @li alpha: A 1D Tensor. The shape of alpha is [1].Must be one of the
- * following types: float32, float16, int8, int32. Has format ND.
- * @li beta: A 1D Tensor. The shape of beta is [1]. Must be one of the following
- * types: float32, float16, int8, int32. Has format ND. \n
-
- * @par Attributes:
- * Two attributes, including:
- * @li transpose_a: Optional. A bool. If True, changes the shape of "a" from
- * [K, M] to [M, K] before multiplication.
- * @li transpose_b: Optional. A bool. If True, changes the shape of "b" from
- * [N, K] to [K, N] before multiplication. \n
-
- * @par Outputs:
- * y: The result matrix Tensor. Must be one of the following types: float32,
- * float16, int8, int32. Has format [ND], the format should be equal to a.
- */
-
- REG_OP(GEMM)
- .INPUT(a, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .INPUT(b, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT32}))
- .ATTR(transpose_a, Bool, false)
- .ATTR(transpose_b, Bool, false)
- .OP_END_FACTORY_REG(GEMM)
-
- /**
- * @brief Multiplies matrix "a" by matrix "b", producing "a * b". \n
- * @par Inputs:
- * Two inputs, including:
- * @li x1: A matrix Tensor. Must be one of the following types: float16,
- * float32, int32. 2D or higher. Has format [ND, NHWC].
- * @li x2: A matrix Tensor. Must be one of the following types: float16,
- * float32, int32. 2D or higher. Has format [ND, NHWC]. \n
-
- * @par Attributes:
- * @li adj_x1: A bool. If True, changes the shape of "x1" from [B, K, M]
- * to [B, M, K] before multiplication.
- * @li adj_x2: A bool. If True, changes the shape of "x2" from [B, N, K]
- * to [B, K, N] before multiplication. \n
-
- * @par Outputs:
- * y: The result matrix Tensor. 2D or higher. Must be one of the following
- * types: float16,
- * float32, int32. 2D or higher. Has format [ND, NHWC]. Has the same shape
- * length as "x1" and "x2". \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator BatchMatmul.
- */
-
- REG_OP(BatchMatMul)
- .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .ATTR(adj_x1, Bool, false)
- .ATTR(adj_x2, Bool, false)
- .OP_END_FACTORY_REG(BatchMatMul)
-
-
- /**
- * @brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n
- * @par Inputs:
- * Three inputs, including:
- * @li x1: A matrix Tensor. Must be one of the following types: float16,
- * float32, int32, int8, int4. 2D or higher. Has format [ND, NHWC].
- * @li x2: A matrix Tensor. Must be one of the following types: float16,
- * float32, int32, int8, int4. 2D or higher. Has format [ND, NHWC].
- * @li bias: A optional Tensor. Must be one of the following types:
- * float16,
- * float32, int32. Has format [ND, NHWC].
- * @li offset_w: A optional Tensor. Must be one of the following types:
- * int8, int4. Has format [ND, NHWC]. \n
-
- * @par Attributes:
- * @li adj_x1: A bool. If True, changes the shape of "x1" from [B, K, M] to
- * [B, M, K] before multiplication.
- * @li adj_x2: A bool. If True, changes the shape of "x2" from [B, N, K] to
- * [B, K, N] before multiplication. \n
-
- * @par Outputs:
- * y: The result matrix Tensor. 2D or higher. Must be one of the following
- * types: float16,
- * float32, int32. 2D or higher. Has format [ND, NHWC]. Has the same shape
- * length as "x1" and "x2". \n
-
- * @attention Constraints:
- * if performances better in format NZ, please close
- * "MatmulTransdataFusionPass" in fusion configuration. \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator BatchMatmul.
- */
-
- REG_OP(BatchMatMulV2)
- .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_INT4, DT_BF16}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_INT4, DT_BF16}))
- .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8, DT_INT4}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_BF16}))
- .ATTR(adj_x1, Bool, false)
- .ATTR(adj_x2, Bool, false)
- .ATTR(offset_x, Int, 0)
- .OP_END_FACTORY_REG(BatchMatMulV2)
-
- /**
- * @brief Computes half the L2 norm of a tensor without the sqrt . \n
-
- * @par Inputs:
-
- * x: A Tensor.
- * TensorType::FloatingDataType() . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x". \n
-
- * @attention Constraints:
- * if performances better in format NZ, please close
- * "MatmulTransdataFusionPass" in fusion configuration. \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator L2Loss.
- */
- REG_OP(L2Loss)
- .INPUT(x, TensorType::FloatingDataType())
- .OUTPUT(y, TensorType::FloatingDataType())
- .OP_END_FACTORY_REG(L2Loss)
-
- /**
- * @brief: Returns a batched diagonal tensor with a given batched diagonal values . \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64 . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixDiag.
- */
- REG_OP(MatrixDiag)
- .INPUT(x, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiag)
-
- /**
- * @brief: Returns a batched diagonal tensor with a given batched diagonal values . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8.
- * @li assist: A Tensor of the same type as "x" . \n
-
- * @par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixDiag.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixDiag instead.
- */
- REG_OP(MatrixDiagD)
- .INPUT(x, TensorType::BasicType())
- .INPUT(assist, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiagD)
-
- /**
- * @brief: Returns the batched diagonal part of a batched tensor . \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64 . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixDiagPart.
- */
- REG_OP(MatrixDiagPart)
- .INPUT(x, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiagPart)
-
- /**
- * @brief: Returns the batched diagonal part of a batched tensor . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8.
- * @li assist: A Tensor of the same type as "x" . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixDiagPart.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixDiagPart instead.
- */
- REG_OP(MatrixDiagPartD)
- .INPUT(x, TensorType::BasicType())
- .INPUT(assist, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiagPartD)
-
- /**
- * @brief: Returns a batched matrix tensor with new batched diagonal values . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64.
- * @li diagonal: A Tensor of the same type as "x" . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixSetDiag.
- */
- REG_OP(MatrixSetDiag)
- .INPUT(x, TensorType::BasicType())
- .INPUT(diagonal, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixSetDiag)
-
- /**
- * @brief: Returns a batched matrix tensor with new batched diagonal values . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8.
- * @li diagonal: A Tensor of the same type as "x".
- * @li assist: A Tensor of the same type as "x" . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator MatrixSetDiag.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixSetDiag instead.
- */
- REG_OP(MatrixSetDiagD)
- .INPUT(x, TensorType::BasicType())
- .INPUT(diagonal, TensorType::BasicType())
- .INPUT(assist, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixSetDiagD)
-
- /**
- * @brief Function AttentionScore. \n
-
- * @par Inputs:
- * six inputs, including:
- * @li query: A matrix Tensor. The type only support float16.
- * @li key: A matrix Tensor. The type only support float16.
- * @li value: A matrix Tensor. The type only support float16.
- * @li padding_mask: A matrix Tensor. The type only support float16.
- * @li scale: A scalar. The type only support float16.
- * @li drop_mask: A matrix Tensor. The type only support uint8. \n
-
- * @par Attributes:
- * @li keep_prob: A mutable Tensor. Must met all of the following rules:
- shape of "keep_prob" should be (1,) or [1,].
- * @li query_transpose: A bool. If True, changes the shape of "query" from [K, M] to
- [M, K].
- * @li key_transpose: A bool. If True, changes the shape of "key" from [N, K] to
- [K, N].
- * @li bmm_score_transpose_a: A bool. If True, changes the shape of "mid_data" from [K, M] to
- [M, K].
- * @li bmm_score_transpose_b: A bool. If True, changes the shape of "value" from [N, K] to
- [K, N].
- * @li axes: A list of int. The dimension softmax would be performed on. Defaults
- to "[-1]" . \n
-
- * @par Outputs:
- * attention_score: The result matrix Tensor. The type only support float16.
- * softmax_output: The result matrix Tensor. The type only support float16.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(AttentionScore)
- .INPUT(query, TensorType({DT_FLOAT16}))
- .INPUT(key, TensorType({DT_FLOAT16}))
- .INPUT(value, TensorType({DT_FLOAT16}))
- .INPUT(padding_mask, TensorType({DT_FLOAT16}))
- .INPUT(scale, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(drop_mask, TensorType({DT_INT8}))
- .OUTPUT(attention_score, TensorType({DT_FLOAT16}))
- .OUTPUT(softmax_output, TensorType({DT_FLOAT16}))
- .ATTR(keep_prob, Float, 1.0)
- .ATTR(query_transpose, Bool, false)
- .ATTR(key_transpose, Bool, false)
- .ATTR(bmm_score_transpose_a, Bool, false)
- .ATTR(bmm_score_transpose_b, Bool, false)
- .ATTR(softmax_axes, ListInt, {-1})
- .OP_END_FACTORY_REG(AttentionScore)
-
- /**
- * @brief Function AttentionScoreGrad. \n
-
- * @par Inputs:
- * seven inputs, including:
- * @li attention_score: A matrix Tensor. The type only support float16.
- * @li dx: A matrix Tensor. The type only support float16.
- * @li query: A matrix Tensor. The type only support float16.
- * @li key: A matrix Tensor. The type only support float16.
- * @li value: A matrix Tensor. The type only support float16.
- * @li scale: A scalar. The type only support float16.
- * @li drop_mask: A matrix Tensor. The type only support uint8. \n
-
- * @par Attributes:
- * @li keep_prob: A mutable Tensor. Must met all of the following rules:
- shape of "keep_prob" should be (1,) or [1,].
- * @li query_transpose: A bool. If True, changes the shape of "query" from [K, M] to
- [M, K].
- * @li key_transpose: A bool. If True, changes the shape of "key" from [N, K] to
- [K, N].
- * @li value_transpose: A bool. If True, changes the shape of "mid_data" from [K, M] to
- [M, K].
- * @li dx_transpose: A bool. If True, changes the shape of "value" from [N, K] to
- [K, N].
- * @li softmax_axes: A int. The dimension softmax would be performed on. Defaults
- to "-1" . \n
-
- * @par Outputs:
- * value_dw: The result matrix Tensor. The type only support float16.
- * query_dx: The result matrix Tensor. The type only support float16.
- * key_dw: The result matrix Tensor. The type only support float16.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(AttentionScoreGrad)
- .INPUT(attention_score, TensorType({DT_FLOAT16}))
- .INPUT(dx, TensorType({DT_FLOAT16}))
- .INPUT(query, TensorType({DT_FLOAT16}))
- .INPUT(key, TensorType({DT_FLOAT16}))
- .INPUT(value, TensorType({DT_FLOAT16}))
- .INPUT(scale, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(drop_mask, TensorType({DT_INT8}))
- .OUTPUT(value_dw, TensorType({DT_FLOAT16}))
- .OUTPUT(query_dx, TensorType({DT_FLOAT16}))
- .OUTPUT(key_dw, TensorType({DT_FLOAT16}))
- .ATTR(keep_prob, Float, 1.0)
- .ATTR(query_transpose, Bool, false)
- .ATTR(key_transpose, Bool, false)
- .ATTR(value_transpose, Bool, false)
- .ATTR(dx_transpose, Bool, false)
- .ATTR(softmax_axes, Int, -1)
- .OP_END_FACTORY_REG(AttentionScoreGrad)
-
- /**
- * @brief Applies sparse "updates" to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float32, int8, uint8, double,
- * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32,
- * uint64
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float32, int8, uint8, double,
- * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32,
- * uint64
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNdUpdate.
- */
- REG_OP(ScatterNdUpdate)
- .INPUT(var, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(var, TensorType::BasicType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterNdUpdate)
-
- /**
- * @brief Applies sparse addition to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, bool, int8, uint8
- * @li indices: An ND Tensor. \n
-
- * Must be one of the following types: int32
- * @li updates: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, bool, int8, uint8
-
- * @par Outputs:
- * y: A Tensor. Has the same type and format as input "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator TensorScatterUpdate.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(TensorScatterUpdate)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(TensorScatterUpdate)
-
- /**
- * @brief Uses "updates" to update tensor "data" by "indices". \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li data: An ND Tensor . \n
- * Must be one of the following types: float16, float32, int32, int8, uint8
- * @li indices: An ND Tensor of type int32 or int64
- * @li updates: An Tensor. Same shape as indices. format:NCHW, NHWC . \n
- * Must be one of the following types: float16, float32, int32, int8, uint8
-
- * @par Attributes:
- * @li axis: An optional attribute. Defaults to 0.
- * @li reduction: An optional attribute. Defaults to string "none" and can be
- * "add" or "mul". \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type and format as input "data" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the ONNX operator ScatterElements.
- */
- REG_OP(ScatterElements)
- .INPUT(data, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(axis, Int, 0)
- .ATTR(reduction, String, "none")
- .OP_END_FACTORY_REG(ScatterElements)
-
- /**
- * @brief Uses "updates" to update tensor "data" by "indices". \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: A Tensor of type BasicType.
- * @li indices: An ND Tensor of type int32 or int64.
- * @li updates: An Tensor with the same dtype as 'var'. Same shape as indices. \n
-
- * @par Attributes:
- * @li use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNdMax.
- */
- REG_OP(ScatterNdMax)
- .INPUT(var, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(var, TensorType::BasicType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterNdMax)
-
- /**
- * @brief Adds sparse "updates" to a variable reference . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor . \n
-
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterAdd.
- */
- REG_OP(ScatterAdd)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterAdd)
-
- /**
- * @brief Adds sparse "updates" to a variable reference . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor .
- * Must be one of the following types: float16, float32, int32, int8, uint8
-
- * @li indices: An ND Tensor of type int32 or int64
-
- * @li updates: An ND Tensor .
- * Must be one of the following types: float16, float32, int32, int8, uint8
-
- * @par Attributes:
- * axis: An required int. The axis along which to index. \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the pytorch operator ScatterAdd.
- */
- REG_OP(ScatterAddWithAxis)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .REQUIRED_ATTR(axis, Int)
- .OP_END_FACTORY_REG(ScatterAddWithAxis)
-
- /**
- * @brief Divides a variable reference by sparse updates . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterDiv.
- */
- REG_OP(ScatterDiv)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterDiv)
-
- /**
- * @brief Applies sparse addition to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNdAdd.
- */
- REG_OP(ScatterNdAdd)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterNdAdd)
-
- /**
- * @brief Applies sparse addition to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, int32, int8, uint8
- * @li indices: An ND Tensor. \n
-
- * Must be one of the following types: int32
- * @li updates: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, int32, int8, uint8
-
- * @par Outputs:
- * y: A Tensor. Has the same type and format as input "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator TensorScatterAdd.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(TensorScatterAdd)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OP_END_FACTORY_REG(TensorScatterAdd)
-
- /**
- * @brief Applies sparse subtraction to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- *use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNdSub.
- */
- REG_OP(ScatterNdSub)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterNdSub)
-
- /**
- * @brief Uses "updates" to update tensor "data" by "indices". \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: A Tensor of type BasicType.
- * @li indices: A ND Tensor of type int32 or int64.
- * @li updates: A Tensor with the same dtype as 'var'. Same shape as indices. \n
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNdMin.
- */
- REG_OP(ScatterNdMin)
- .INPUT(var, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(var, TensorType::BasicType())
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterNdMin)
-
- /**
- * @brief Applies sparse addition to individual values or slices in a Variable . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, int32, int8, uint8
- * @li indices: An ND Tensor. \n
-
- * Must be one of the following types: int32
- * @li updates: An ND Tensor. \n
-
- * Must be one of the following types: float16, float32, int32, int8, uint8
-
- * @par Outputs:
- * y: A Tensor. Has the same type and format as input "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator TensorScatterSub.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(TensorScatterSub)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OP_END_FACTORY_REG(TensorScatterSub)
-
- /**
- * @brief Subtracts sparse updates to a variable reference . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterSub.
- */
- REG_OP(ScatterSub)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterSub)
-
- /**
- * @brief: Returns the batched diagonal part of a batched tensor with "assist" . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor of type float16, float32, or int32.
- * @li assist: A Tensor of the same type as "x" . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator DiagPart.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use DiagPart instead.
- */
- REG_OP(DiagPartD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .INPUT(assist, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OP_END_FACTORY_REG(DiagPartD)
-
- /**
- * @brief: Returns the batched diagonal part of a batched tensor . \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float32, int32, int64, double, complex64, complex128 . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator DiagPart.
- */
- REG_OP(DiagPart)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT64, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT64, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128}))
- .OP_END_FACTORY_REG(DiagPart)
-
- /**
- * @brief Also known as a "fully-connected" layer, computes an inner product
- * with a set of learned weights, and (optionally) adds biases. \n
- * @par Inputs:
- * Four inputs, including:
- * @li x: A Tensor of type float16, int8, int4.
- * @li w: A weight matrix of type float16, int8, int4, float32.
- * @li b: An optional Tensor of type float16, int32, float32.
- * @li offset_w: An optional Tensor of type int8, int4.
- * Reserved. Only None Supported. \n
-
- * @par Attributes:
- * @li num_output: Required. An int, output neuron number. Reserved.
- * @li transpose: A bool, specifying weight whether to transpose input w,
- * either "true" or "false". Defaults to "false".
- * @li axis: Optional. An int, 1 or 2, specifying which dimension the input
- * "K" starts from. Defaults to 1.
- * The product of the subsequent dimensions starting form first dimension
- * or the second dimension is "K".
- * @li offset_x: An optional integer for quantized FullyConnection.
- * The negative offset added to the input image for int8 type. Ensure offset_x
- * within the effective range of int8 [-128, 127]. Defaults to "0". \n
-
- * @par Outputs:
- * y: The result tensor of type float16, int32, float32. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Caffe operator InnerProduct. \n
-
- * @par Quantization supported or not
- * Yes
- */
- REG_OP(FullyConnection)
- .INPUT(x, TensorType({DT_FLOAT16, DT_INT8, DT_INT4, DT_FLOAT, DT_BF16}))
- .INPUT(w, TensorType({DT_FLOAT16, DT_INT8, DT_INT4, DT_FLOAT, DT_BF16}))
- .OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_BF16}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8, DT_INT4}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_BF16}))
- .REQUIRED_ATTR(num_output, Int)
- .ATTR(transpose, Bool, false)
- .ATTR(axis, Int, 1)
- .ATTR(offset_x, Int, 0)
- .OP_END_FACTORY_REG(FullyConnection)
-
- /**
- * @brief Also known as a "fully-connected-compress" layer, computes an inner
- * product with a set of learned weights, and (optionally) adds biases. \n
- * @par Inputs:
- * Five inputs, including:
- * @li x: A Tensor of type uint8, int8.
- * @li w: A weight matrix of type int8.
- * @li compress_index: A compress index matrix of type int8.
- * @li b: A optional Tensor of type int32.
- * @li offset_w: A optional Tensor of type int8.
-
- * @par Attributes:
- * @li num_output: A int, specifying the number of outputs.
- * @li transpose: A bool, specifying whether to transpose input w, either "true"
- * or "false". Defaults to "false".
- * @li axis: Optional. A int, 1 or 2, specifying which dimension the input "K"
- * starts from. Defaults to "1".
- * The product of the subsequent dimensions starting form first dimension or the
- * second dimension is "K".
- * @li offset_x: An optional integer for quantized FullyConnectionCompress.
- * The negative offset added to the input image for int8 type. Ensure offset_x
- * within the effective range of int8 [-128, 127]. Defaults to "0". \n
-
- * @par Outputs:
- * y: The result tensor of type int32. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Caffe operator InnerProduct. \n
-
- * @par Quantization supported or not
- * Yes
- */
- REG_OP(FullyConnectionCompress)
- .INPUT(x, TensorType({DT_UINT8, DT_INT8}))
- .INPUT(w, TensorType({DT_INT8}))
- .INPUT(comress_index, TensorType({DT_INT8}))
- .OPTIONAL_INPUT(b, TensorType({DT_INT32}))
- .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .REQUIRED_ATTR(num_output, Int)
- .ATTR(transpose, Bool, false)
- .ATTR(axis, Int, 1)
- .ATTR(offset_x, Int, 0)
- .OP_END_FACTORY_REG(FullyConnectionCompress)
-
- /**
- * @brief Computes the confusion matrix from predictions and labels . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li labels: A Tensor. Must be one of the following types: float16, float32,
- * int32, int8, uint8.
- * @li predictions: A Tensor. Must be one of the following types: float16,
- * float32, int32, int8, uint8.
- * @li weights: A Tensor. Must be one of the following types: float16, float32,
- * int32, int8, uint8 . \n
-
- * @par Attributes:
- * @li num_classes: An integer for the shape of the output matrix.
- * No default value.
- * @li dtype: Data type of the confusion matrix. No default value . \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type and format as input "labels"
-
- * @attention Constraints:
- * @li "weights", "labels", and "predictions" are 1D tensors.
- * @li The output is with shape (num_classes, num_classes),
- * where, 1 <= num_classes <= 4096 . \n
-
- * @see Region()
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ConfusionMatrix.
- */
- REG_OP(ConfusionMatrix)
- .INPUT(labels, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8}))
- .INPUT(predictions, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8}))
- .OPTIONAL_INPUT(weights, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8}))
- .REQUIRED_ATTR(num_classes, Int)
- .REQUIRED_ATTR(dtype, String)
- .OP_END_FACTORY_REG(ConfusionMatrix)
-
- /**
- * @brief Multiplies sparse updates into a variable reference . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor . \n
-
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True", the operation
- * will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterMul.
- */
- REG_OP(ScatterMul)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterMul)
-
- /**
- * @brief Reduces sparse updates into a variable reference using
- * the "min" operation . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @li indices: An ND Tensor.
- * Must be one of the following types: int32 or int64
-
- * @li updates: An ND Tensor.
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True", the operation
- * will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterMin.
- */
- REG_OP(ScatterMin)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterMin)
-
- /**
- * @brief Reduces sparse updates into a variable reference using the "max" operation . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An NCHW, NHWC, or ND Tensor . \n
-
- * Must be one of the following types: int32 or int64
- * @li updates: An NCHW, NHWC, or ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False".
- * If "True", the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterMax.
- */
- REG_OP(ScatterMax)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterMax)
-
- /**
- * @brief Applies sparse updates to a variable reference . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: An ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
- * @li indices: An ND Tensor . \n
-
- * Must be one of the following types: int32 or int64
- * @li updates: An ND Tensor .
-
- * Must be one of the following types: float16, float, int32, int8, uint8
-
- * @par Attributes:
- * use_locking: An optional bool. Defaults to "False". If "True",
- * the operation will be protected by a lock . \n
-
- * @par Outputs:
- * var: A Tensor. Has the same type and format as input "var" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(ScatterUpdate)
- .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8}))
- .ATTR(use_locking, Bool, false)
- .OP_END_FACTORY_REG(ScatterUpdate)
-
- /**
- * @brief Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input` . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li input: Rank `r` tensor where `r >= 2`. \n
-
- * @li k: \n
- * Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n
- * diagonal, and negative value means subdiagonals. `k` can be a single integer \n
- * (for a single diagonal) or a pair of integers specifying the low and high ends \n
- * of a matrix band. `k[0]` must not be larger than `k[1]`. \n
-
- * @li padding_value: The value to fill the area outside the specified diagonal band with. \n
-
- * @par Outputs:
- * diagonal: The extracted diagonal(s) . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(MatrixDiagPartV2)
- .INPUT(input, TensorType::BasicType())
- .INPUT(k, TensorType({DT_INT32}))
- .INPUT(padding_value, TensorType::BasicType())
- .OUTPUT(diagonal, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiagPartV2)
-
- /**
- * @brief Returns a batched matrix tensor with new batched diagonal values . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li input: "Rank `r+1`, where `r >= 1`. \n
-
- * @li diagonal: Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. \n
-
- * @li k:
- * Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n
- * diagonal, and negative value means subdiagonals. `k` can be a single integer \n
- * (for a single diagonal) or a pair of integers specifying the low and high ends \n
- * of a matrix band. `k[0]` must not be larger than `k[1]`. \n
-
- * @par Outputs:
- * output: Rank `r+1`, with `output.shape = input.shape` . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(MatrixSetDiagV2)
- .INPUT(input, TensorType::BasicType())
- .INPUT(diagonal, TensorType::BasicType())
- .INPUT(k, TensorType({DT_INT32}))
- .OUTPUT(output, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixSetDiagV2)
-
- /**
- * @brief Returns a batched matrix tensor with new batched diagonal values . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li input: "Rank `r+1`, where `r >= 1`. \n
-
- * @li diagonal: Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. \n
-
- * @li k:
- * Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n
- * diagonal, and negative value means subdiagonals. `k` can be a single integer \n
- * (for a single diagonal) or a pair of integers specifying the low and high ends \n
- * of a matrix band. `k[0]` must not be larger than `k[1]`. \n
-
- * @par Attributes:
- * @li align: An optional string. Defaults to RIGHT_LEFT. It is a string specifying \n
- * how superdiagonals and subdiagonals should be aligned, respectively. \n
- * other optional: LEFT_RIGHT, LEFT_LEFT, and RIGHT_RIGHT.\n
-
- * @par Outputs:
- * output: Rank `r+1`, with `output.shape = input.shape` . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(MatrixSetDiagV3)
- .INPUT(input, TensorType::BasicType())
- .INPUT(diagonal, TensorType::BasicType())
- .INPUT(k, TensorType({DT_INT32}))
- .OUTPUT(output, TensorType::BasicType())
- .ATTR(align, String, "RIGHT_LEFT")
- .OP_END_FACTORY_REG(MatrixSetDiagV3)
-
- /**
- * @brief Returns a batched diagonal tensor with given batched diagonal values . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li diagonal: Rank `r`, where `r >= 1` \n
-
- * @li k:
- * Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n
- * diagonal, and negative value means subdiagonals. `k` can be a single integer \n
- * (for a single diagonal) or a pair of integers specifying the low and high ends \n
- * of a matrix band. `k[0]` must not be larger than `k[1]`. \n
-
- * @li num_rows:
- * The number of rows of the output matrix. If it is not provided, the op assumes \n
- * the output matrix is a square matrix and infers the matrix size from k and the \n
- * innermost dimension of `diagonal`. \n
-
- * @li num_cols: An NCHW, NHWC, or ND Tensor.
- * The number of columns of the output matrix. If it is not provided, the op \n
- * assumes the output matrix is a square matrix and infers the matrix size from \n
- * k and the innermost dimension of `diagonal`. \n
-
- * @li padding_value: The number to fill the area outside the specified diagonal band with. \n
-
- * @par Outputs:
- * output: Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(MatrixDiagV2)
- .INPUT(diagonal, TensorType::BasicType())
- .INPUT(k, TensorType({DT_INT32}))
- .INPUT(num_rows, TensorType({DT_INT32}))
- .INPUT(num_cols, TensorType({DT_INT32}))
- .INPUT(padding_value, TensorType::BasicType())
- .OUTPUT(output, TensorType::BasicType())
- .OP_END_FACTORY_REG(MatrixDiagV2)
-
- /**
- * @brief Add updates to var_out according to axis and indices.
-
- * @par Inputs:
- * Three inputs, including:
- * @li var: A Tensor. Must be one of the following types:
- * float16, float32, int32, int8, uint8.
- * @li indices: A Tensor of the indices, type should be int32.
- * @li updates: A Tensor of the same type as "var".
-
- * @par Attributes:
- * @li axis: An required int to specify the axis to perform indices add.
-
- * @par Outputs:
- * @li var_out: A Tensor. Same as input "var".
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator index_add.
-
- * @par Restrictions:
- * Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(IndexAdd)
- .INPUT(var, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16}))
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(updates, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16}))
- .OUTPUT(var_out, TensorType({DT_INT32, DT_INT8, DT_UINT8, DT_FLOAT32, DT_FLOAT16}))
- .ATTR(axis, Int, 0)
- .OP_END_FACTORY_REG(IndexAdd)
-
- /**
- * @brief According to the index number of indexes, replace the value
- * corresponding to X1 with the value in x2.
-
- * @par Inputs:
- * Three inputs, including:
- * @li x1: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64. \n
-
- * @li x2: A Tensor of the same type as "x1".
- * @li indices: A Tensor of the indices,
-
- * @par Attributes:
- * @li accumulate: Does it support self accumulation.Defaults to 0.
-
- * @par Outputs:
- * @li y: A Tensor. Same as input "x1".
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator index_put.
-
- * @par Restrictions:
- * Warning:THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(IndexPut)
- .INPUT(x1, TensorType::BasicType())
- .INPUT(x2, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .REQUIRED_ATTR(indices, ListInt)
- .ATTR(accumulate, Int, 0)
- .OP_END_FACTORY_REG(IndexPut)
-
- /**
- * @brief: Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64. \n
-
- * @par Attributes:
- * diagonal: An optional attribute indicates the diagonal to consider. \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator Triu.
- */
- REG_OP(Triu)
- .INPUT(x, TensorType::BasicType())
- .ATTR(diagonal, Int, 0)
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(Triu)
-
- /**
- * @brief: Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input \n
-
- *@par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64. \n
-
- * @par Attributes:
- * diagonal: An optional attribute indicates the diagonal to consider. \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator Tril.
- */
- REG_OP(Tril)
- .INPUT(x, TensorType::BasicType())
- .ATTR(diagonal, Int, 0)
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(Tril)
- /**
- * @brief Concatenates a list of N tensors along the first dimension.
- * @par Inputs:
- * @li x: A list of Tensors. Must be one of the following types: int32,
- * float16, float32. Tensors to be concatenated. All must have size 1 in
- * the first dimension and same shape. It's a dynamic input. \n
-
- * @par Attributes:
- * @li equation: The subscripts for the Einstein summation. \n
- * @li N: tensor size of input. \n
-
- * @par Outputs:
- * @li y: Sums the product of the elements of the input operands along
- * dimensions specified
- * using a notation based on the Einstein summation convention. \n
-
- * @attention Constraints:
- * Input N must be Int. \n
-
- * @par Third-party framework compatibility
- * Compatible with Tensorflow 2.x einsum operator.
- */
- REG_OP(Einsum)
- .DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .REQUIRED_ATTR(equation, String)
- .REQUIRED_ATTR(N, Int)
- .OP_END_FACTORY_REG(Einsum)
-
- /**
- * @brief Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. \n
-
- * @par Inputs:
- * No inputs
-
- * @par Attributes:
- * @li num_rows: An required int. \n
- * @li num_columns: An optional int.Defaults to 0. \n
- * @li batch_shape: An optional ListInt.Defaults to []. \n
- * @li dtype: An optional int.Defaults to 0. \n
-
- * @par Outputs:
- * y: A Tensor with targeted type and shape. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator Eye. \n
- */
- REG_OP(Eye)
- .OUTPUT(y, TensorType::BasicType()) /* "Result, has targeted element type" */
- .REQUIRED_ATTR(num_rows, Int)
- .ATTR(num_columns, Int, 0)
- .ATTR(batch_shape, ListInt, {})
- .ATTR(dtype, Int, 0)
- .OP_END_FACTORY_REG(Eye)
-
- /**
- * @brief: Fill diagonal of at least 2 dimension tensors with value . \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float32, int32, int64 . \n
-
- * @par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- * @par Attributes:
- * fill_value:The value to fill in
- * wrap: An optional bool. Defaults to "False". If "True", Use recursive fill. \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator FillDiagonal.
- */
- REG_OP(FillDiagonal)
- .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT64}))
- .REQUIRED_ATTR(fill_value, Float)
- .ATTR(wrap, Bool, false)
- .OP_END_FACTORY_REG(FillDiagonal)
-
- /**
- * @brief: Returns the sum of the elements of the diagonal of the input 2-D matrix. \n
-
- * @par Inputs:
- * x: A Tensor. Must be one of the following types:
- * float16, float. \n
-
- * @par Outputs:
- * y: A Tensor. Has the same type as "x" . \n
-
- * @par Third-party framework compatibility
- * Compatible with the Pytorch operator Trace.
- */
-
- REG_OP(Trace)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OP_END_FACTORY_REG(Trace)
-
- /**
- * @brief Computes the generalized inverse of any matrix. \n
-
- * @par Inputs:
- * @li x: input matrix. Must be one of the following types:
- * double, float. \n
-
- * @par Attributes:
- * @li rcond: An optional float >= 0 or inf. Defaults to 1e-15. \n
-
- * @par Outputs:
- * y: A Tensor with the same type and shape of x's transpose. \n
-
- */
- REG_OP(Pinverse)
- .INPUT(x, TensorType({ DT_FLOAT, DT_DOUBLE }))
- .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE }))
- .ATTR(rcond, Float, 1e-15)
- .OP_END_FACTORY_REG(Pinverse)
-
- /**
- * @brief From the input tensor and updates tensor, select the maximum value according to indices to output. \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li input: Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64.
- * @li indices: Must be one of the following types:
- * int32, int64.
- * @li updates: Must have the same type as input. \n
-
- * @par Outputs:
- * output: A Tensor with the same type as input. \n
- */
- REG_OP(TensorScatterMax)
- .INPUT(input, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(output, TensorType::BasicType())
- .OP_END_FACTORY_REG(TensorScatterMax)
-
- /**
- * @brief From the input tensor and updates tensor, select the minimum value according to indices to output. \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li input: Must be one of the following types:
- * float16, float32, double, int32, uint8, int16, int8, complex64, int64,
- * qint8, quint8, qint32, uint16, complex128, uint32, uint64.
- * @li indices: Must be one of the following types:
- * int32, int64.
- * @li updates: Must have the same type as input. \n
-
- * @par Outputs:
- * output: A Tensor with the same type as input. \n
- */
- REG_OP(TensorScatterMin)
- .INPUT(input, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::BasicType())
- .OUTPUT(output, TensorType::BasicType())
- .OP_END_FACTORY_REG(TensorScatterMin)
-
- /**
- * @brief: Returns the batched diagonal part of a batched tensor. \n
-
- * @par Inputs:
- * @li x: A Tensor. Rank r tensor where r >= 2.
- * @li k: A Tensor of type int32. Diagonal offset(s). Positive value means superdiagonal,
- 0 refers to the main diagonal, and negative value means subdiagonals. k can be a
- single integer (for a single diagonal) or a pair of integers specifying the low and
- high ends of a matrix band. k[0] must not be larger than k[1].
- * @li padding_value:A Tensor. Must have the same type as input. The value to fill the area
- outside the specified diagonal band with. Default is 0. \n
-
- * @par Outputs:
- * @li y: A Tensor. Has the same type as "input". \n
-
- * @par Attributes:
- * @li align:An optional string from: "LEFT_RIGHT", "RIGHT_LEFT", "LEFT_LEFT", "RIGHT_RIGHT". Defaults to "RIGHT_LEFT".
-
- * @par Third-party framework compatibility
- * Compatible with the Tensorflow operator FillDiagonal.
- */
- REG_OP(MatrixDiagPartV3)
- .INPUT(x, TensorType::BasicType())
- .INPUT(k, TensorType({DT_INT32}))
- .INPUT(padding_value, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .ATTR(align,String ,"RIGHT_LEFT")
- .OP_END_FACTORY_REG(MatrixDiagPartV3)
-
- /**
- * @brief Returns a batched diagonal tensor with given batched diagonal values . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li x: Rank `r`, where `r >= 1` \n
-
- * @li k:
- * Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main
- * diagonal, and negative value means subdiagonals. `k` can be a single integer
- * (for a single diagonal) or a pair of integers specifying the low and high ends
- * of a matrix band. `k[0]` must not be larger than `k[1]`. \n
-
- * @li num_rows:
- * The number of rows of the output matrix. If it is not provided, the op assumes
- * the output matrix is a square matrix and infers the matrix size from k and the
- * innermost dimension of `diagonal`. \n
-
- * @li num_cols: An NCHW, NHWC, or ND Tensor.
- * The number of columns of the output matrix. If it is not provided, the op
- * assumes the output matrix is a square matrix and infers the matrix size from
- * k and the innermost dimension of `diagonal`. \n
-
- * @li padding_value: The number to fill the area outside the specified diagonal band with. \n
-
- * @par Attributes:
- * @li align: An optional string from: "LEFT_RIGHT", "RIGHT_LEFT", "LEFT_LEFT", "RIGHT_RIGHT".
- * Defaults to "RIGHT_LEFT" \n
-
- * @par Outputs:
- * @li y: Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterUpdate.
- */
- REG_OP(MatrixDiagV3)
- .INPUT(x, TensorType({BasicType(), DT_BOOL}))
- .INPUT(k, TensorType({DT_INT32}))
- .INPUT(num_rows, TensorType({DT_INT32}))
- .INPUT(num_cols, TensorType({DT_INT32}))
- .INPUT(padding_value, TensorType({BasicType(), DT_BOOL}))
- .OUTPUT(y, TensorType({BasicType(), DT_BOOL}))
- .ATTR(align, String, "RIGHT_LEFT")
- .OP_END_FACTORY_REG(MatrixDiagV3)
-
- /**
- * @brief Function SwinAttentionScore. \n
-
- * @par Inputs:
- * six inputs, including:
- * @li query: A matrix Tensor. The type only support float16.
- * @li key: A matrix Tensor. The type only support float16.
- * @li value: A matrix Tensor. The type only support float16.
- * @li padding_mask1: A matrix Tensor. The type only support float16.
- * @li padding_mask2: A matrix Tensor. The type only support float16.
- * @li scale: A scalar. The type only support float16.
- * @li drop_mask: A matrix Tensor. The type only support uint8. \n
-
- * @par Attributes:
- * @li keep_prob: A mutable Tensor. Must met all of the following rules:
- shape of "keep_prob" should be (1,) or [1,].
- * @li query_transpose: A bool. If True, changes the shape of "query" from [K, M] to
- [M, K].
- * @li key_transpose: A bool. If True, changes the shape of "key" from [N, K] to
- [K, N].
- * @li bmm_score_transpose_a: A bool. If True, changes the shape of "mid_data" from [K, M] to
- [M, K].
- * @li bmm_score_transpose_b: A bool. If True, changes the shape of "value" from [N, K] to
- [K, N].
- * @li axes: A list of int. The dimension softmax would be performed on. Defaults
- to "[]" . \n
-
- * @par Outputs:
- * attention_score: The result matrix Tensor. The type only support float16.
- * softmax: The result matrix Tensor. The type only support float16.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(SwinAttentionScore)
- .INPUT(query, TensorType({DT_FLOAT16}))
- .INPUT(key, TensorType({DT_FLOAT16}))
- .INPUT(value, TensorType({DT_FLOAT16}))
- .INPUT(padding_mask1, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(padding_mask2, TensorType({DT_FLOAT16}))
- .INPUT(scale, TensorType({DT_FLOAT16}))
- .OPTIONAL_INPUT(drop_mask, TensorType({DT_INT8}))
- .OUTPUT(attention_score, TensorType({DT_FLOAT16}))
- .OUTPUT(softmax, TensorType({DT_FLOAT16}))
- .ATTR(keep_prob, Float, 1.0)
- .ATTR(query_transpose, Bool, false)
- .ATTR(key_transpose, Bool, false)
- .ATTR(bmm_score_transpose_a, Bool, false)
- .ATTR(bmm_score_transpose_b, Bool, false)
- .ATTR(softmax_axes, ListInt, {})
- .OP_END_FACTORY_REG(SwinAttentionScore)
-
- /**
- * @brief
- swin_transformer model specific structure.Operator only supports swin_transformer. \n
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor. Must be one of the following types: float16.
- * @li weight: A Tensor. Must be one of the following types: float16.
- * @li bias: A Tensor. Must be one of the following types: float16. \n
-
- * @par Attributes:
- * @li shifts: A optional attribute, the type is list int. Defaults to (). \n
-
- * @par Outputs:
- * One output, including:
- * @li y: A Tensor. Must be one of the following types: float16. \n
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use. \n
- */
- REG_OP(SwinAttentionFFN)
- .INPUT(x1, TensorType({DT_FLOAT16}))
- .INPUT(x2, TensorType({DT_FLOAT16}))
- .INPUT(bias, TensorType({DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_FLOAT16}))
- .ATTR(shifts, ListInt, {})
- .OP_END_FACTORY_REG(SwinAttentionFFN)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_
|