You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

parallel_group_pass.h 2.3 kB

4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_PASSES_PARALLEL_GROUP_PASS_H
  17. #define GE_GRAPH_PASSES_PARALLEL_GROUP_PASS_H
  18. #include <map>
  19. #include <unordered_set>
  20. #include "graph/graph.h"
  21. #include "inc/graph_pass.h"
  22. namespace ge {
  23. class ParallelGroupPass : public GraphPass {
  24. public:
  25. Status Run(ComputeGraphPtr graph) override;
  26. private:
  27. Status ProcessGraphGroupNodes(ComputeGraphPtr graph, int32_t depth, std::unordered_set<std::string> &parallel_group);
  28. Status AddCtrlEdge(NodePtr pre_node, NodePtr cur_node);
  29. Status ReplaceWithSwitchAndMerge(NodePtr pre_node, NodePtr cur_node,
  30. const std::map<NodePtr, std::pair<std::set<NodePtr>, NodePtr>> &node_2_switch_merge);
  31. bool HasSameSwitch(const std::set<NodePtr> &a, const std::set<NodePtr> &b);
  32. Status ProcessGroupNodeInSwitch(ComputeGraphPtr graph,
  33. std::map<NodePtr, std::pair<std::set<NodePtr>, NodePtr>> &node_2_switch_merge);
  34. void FindGroupNodeAndMerge(NodePtr stream_switch_node, std::set<NodePtr> &group_nodes,
  35. std::vector<NodePtr> &merge_nodes, std::set<std::string> &stream_labels);
  36. Status MappingNodeToSwitchAndMerge(const std::set<NodePtr> &group_set, const std::vector<NodePtr> &merge_vec,
  37. const NodePtr &cast_node, const NodePtr &switch_node,
  38. std::map<NodePtr, std::pair<std::set<NodePtr>, NodePtr>> &node_2_switch_merge);
  39. bool IsBigSmallLoopStreamSwitch(OpDescPtr switch_op_desc);
  40. bool IsWhileStreamSwitch(OpDescPtr switch_op_desc);
  41. bool IsIndirectConnect(const NodePtr &node_a, const NodePtr &node_b);
  42. };
  43. } // namespace ge
  44. #endif // GE_GRAPH_PASSES_PARALLEL_GROUP_PASS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示