You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_pipeline_executor.cc 13 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. #include "hybrid_model_pipeline_executor.h"
  2. #include "common/math/math_util.h"
  3. #include "common/dump/dump_manager.h"
  4. #include "graph/ge_context.h"
  5. #include "graph/runtime_inference_context.h"
  6. #include "graph/load/model_manager/model_manager.h"
  7. namespace ge {
  8. namespace hybrid {
  9. namespace {
  10. constexpr int kNumExecutors = 2;
  11. const int kMinLoopCount = 2;
  12. const int kIntBase = 10;
  13. const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL";
  14. }
  15. StageExecutor::StageExecutor(int id, HybridModel *model, PipeExecutionConfig *config)
  16. : id_(id), model_(model), pipe_config_(config) {}
  17. StageExecutor::~StageExecutor() {
  18. GELOGD("~StageExecutor(), id = %d", id_);
  19. if (stream_ != nullptr) {
  20. GE_CHK_RT(rtStreamDestroy(stream_));
  21. stream_ = nullptr;
  22. }
  23. if (hccl_stream_ != nullptr) {
  24. GE_CHK_RT(rtStreamDestroy(hccl_stream_));
  25. hccl_stream_ = nullptr;
  26. }
  27. }
  28. Status StageExecutor::Init() {
  29. GELOGD("[Executor: %d] Start to init StateExecutor", id_);
  30. context_.rt_context = pipe_config_->rt_context;
  31. GE_CHK_STATUS_RET_NOLOG(InitExecutionContext());
  32. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  33. GE_CHK_RT_RET(rtStreamCreate(&hccl_stream_, RT_STREAM_PRIORITY_DEFAULT));
  34. context_.stream = stream_;
  35. context_.hccl_stream = hccl_stream_;
  36. root_graph_executor_.reset(new (std::nothrow) SubgraphExecutor(model_->GetRootGraphItem(), &context_));
  37. GE_CHECK_NOTNULL(root_graph_executor_);
  38. GELOGD("[Executor: %d] Init stage executor successfully", id_);
  39. return SUCCESS;
  40. }
  41. Status StageExecutor::ResetExecutionContext(GraphExecutionContext &context) {
  42. GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init());
  43. string ctx_id = std::to_string(context.context_id);
  44. RuntimeInferenceContext::DestroyContext(ctx_id);
  45. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext");
  46. RuntimeInferenceContext *ctx = nullptr;
  47. GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context");
  48. for (auto &host_tensor : context.model->GetHostTensors()) {
  49. auto node_id = host_tensor.first;
  50. for (const auto &output_idx_and_tensor : host_tensor.second) {
  51. auto output_idx = output_idx_and_tensor.first;
  52. GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx);
  53. ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone());
  54. }
  55. }
  56. return SUCCESS;
  57. }
  58. Status StageExecutor::Start(const std::vector<TensorValue> &inputs, const std::vector<ConstGeTensorDescPtr> &input_desc,
  59. int iteration_count) {
  60. GELOGD("Start");
  61. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  62. int num_loops = iteration_count / pipe_config_->num_executors;
  63. if (id_ < iteration_count % iteration_count) {
  64. num_loops += 1;
  65. }
  66. FMK_INT32_MULCHECK(num_loops, pipe_config_->num_stages);
  67. num_loops *= pipe_config_->num_stages;
  68. GELOGD("[Executor: %d] loop count = %d", id_, num_loops);
  69. for (int loop_idx = 0; loop_idx < num_loops; ++loop_idx) {
  70. GELOGD("[Executor: %d] Start to wait for task.", id_);
  71. StageTask task_info;
  72. task_queue_.Pop(task_info);
  73. GELOGD("[Executor: %d] Got task, stage = %d, iteration = %ld", id_, task_info.stage, task_info.iteration);
  74. if (task_info.iteration >= pipe_config_->iteration_end) {
  75. GELOGE(INTERNAL_ERROR, "[Check][Range][Executor: %d] Unexpected iteration: %ld.", id_, task_info.iteration);
  76. REPORT_INNER_ERROR("E19999", "[Executor: %d] Unexpected iteration: %ld.", id_, task_info.iteration);
  77. return INTERNAL_ERROR;
  78. }
  79. if (task_info.event != nullptr) {
  80. GELOGD("[%d] Add StreamWaitEvent", id_);
  81. GE_CHK_RT_RET(rtStreamWaitEvent(stream_, task_info.event));
  82. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] EventWait End", task_info.iteration,
  83. task_info.stage);
  84. }
  85. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] Start", task_info.iteration,
  86. task_info.stage);
  87. if (task_info.stage == 0) {
  88. GELOGD("[Executor: %d] To ResetExecutionContext", id_);
  89. GE_CHK_STATUS_RET(ResetExecutionContext(context_),
  90. "[Invoke][ResetExecutionContext][Executor: %d] Failed to reset context", id_);
  91. context_.iteration = task_info.iteration;
  92. GE_CHK_STATUS_RET_NOLOG(SetInputs(inputs, input_desc));
  93. }
  94. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync Start", task_info.stage);
  95. GE_CHK_STATUS_RET(root_graph_executor_->PartialExecuteAsync(task_info.stage));
  96. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Stage = %d] PartialExecuteAsync End", task_info.stage);
  97. GELOGD("[Executor: %d] PartialExecuteAsync successfully.", id_);
  98. // notify next execution unit
  99. StageTask next_task;
  100. next_task.stage = task_info.stage;
  101. next_task.iteration = task_info.iteration + 1;
  102. if ((task_info.iteration + 1) % iteration_count > 0) {
  103. GE_CHK_RT_RET(rtEventCreate(&next_task.event));
  104. GE_CHK_RT_RET(rtEventRecord(next_task.event, context_.hccl_stream));
  105. }
  106. auto sync_result = Synchronize();
  107. if (sync_result != SUCCESS) {
  108. GELOGE(sync_result,
  109. "[Invoke][Synchronize][Executor: %d] Failed to sync result:%d. iteration = %ld",
  110. id_, sync_result, task_info.iteration);
  111. REPORT_CALL_ERROR("E19999", "[Executor: %d] Failed to sync result:%d. iteration = %ld",
  112. id_, sync_result, task_info.iteration);
  113. if (context_.profiler != nullptr) {
  114. context_.profiler->Dump(std::cout);
  115. }
  116. context_.callback_manager->Destroy();
  117. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  118. return sync_result;
  119. }
  120. if (task_info.event != nullptr) {
  121. GE_CHK_RT_RET(rtEventDestroy(task_info.event));
  122. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] EventDestroy End", task_info.iteration,
  123. task_info.stage);
  124. }
  125. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] [Stage = %d] End", task_info.iteration, task_info.stage);
  126. // if end stage
  127. if (task_info.stage >= pipe_config_->num_stages - 1) {
  128. RECORD_MODEL_EXECUTION_EVENT(&context_, "[iteration = %ld] Schedule End", task_info.iteration);
  129. GELOGD("[Executor: %d] End of iteration [%ld]", id_, task_info.iteration);
  130. context_.callback_manager->Destroy();
  131. RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id));
  132. }
  133. next_executor_->ExecuteAsync(next_task);
  134. GELOGD("[Executor: %d] Push item successfully.", id_);
  135. }
  136. GELOGD("[Executor: %d] Process task ended.", id_);
  137. return SUCCESS;
  138. }
  139. Status StageExecutor::ExecuteAsync(const StageTask &args) {
  140. (void)task_queue_.Push(args);
  141. return SUCCESS;
  142. }
  143. Status StageExecutor::Synchronize() {
  144. auto ret = root_graph_executor_->Synchronize();
  145. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End, ret = %u", ret);
  146. return ret;
  147. }
  148. HybridModelPipelineExecutor::HybridModelPipelineExecutor(HybridModel *model, uint32_t device_id)
  149. : model_(model), device_id_(device_id) {
  150. config_.num_executors = kNumExecutors;
  151. config_.num_stages = model_->GetRootGraphItem()->NumGroups();
  152. config_.device_id = device_id_;
  153. config_.iteration_end = 0;
  154. config_.rt_context = nullptr;
  155. }
  156. Status StageExecutor::InitExecutionContext() {
  157. GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0));
  158. GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context));
  159. context_.model = model_;
  160. context_.session_id = ::ge::GetContext().SessionId();
  161. GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id);
  162. context_.allocator = NpuMemoryAllocator::GetAllocator(pipe_config_->device_id);
  163. GE_CHECK_NOTNULL(context_.allocator);
  164. context_.callback_manager = std::unique_ptr<CallbackManager>(new (std::nothrow) CallbackManager());
  165. GE_CHECK_NOTNULL(context_.callback_manager);
  166. context_.dump_properties = DumpManager::GetInstance().GetDumpProperties(context_.session_id);
  167. context_.is_eos_ = false;
  168. if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) {
  169. context_.trace_enabled = true;
  170. }
  171. return SUCCESS;
  172. }
  173. Status StageExecutor::SetInputs(const vector<TensorValue> &inputs, const vector<ConstGeTensorDescPtr> &input_desc) {
  174. root_graph_executor_->InitForPartialExecution(inputs, input_desc);
  175. return SUCCESS;
  176. }
  177. Status StageExecutor::GetOutputs(vector<TensorValue> &outputs, vector<ConstGeTensorDescPtr> &output_desc) {
  178. return root_graph_executor_->GetOutputs(outputs, output_desc);
  179. }
  180. void StageExecutor::Reset() {
  181. task_queue_.Stop();
  182. task_queue_.Clear();
  183. task_queue_.Restart();
  184. }
  185. Status HybridModelPipelineExecutor::Init() {
  186. const char *profiling_level = std::getenv(kEnvProfilingLevel);
  187. if (profiling_level != nullptr) {
  188. GraphExecutionContext::profiling_level = std::strtol(profiling_level, nullptr, kIntBase);
  189. GELOGD("Got profiling level = %ld", GraphExecutionContext::profiling_level);
  190. if (GraphExecutionContext::profiling_level > 0) {
  191. context_.profiler.reset(new (std::nothrow) HybridProfiler());
  192. GE_CHECK_NOTNULL(context_.profiler);
  193. }
  194. }
  195. GELOGD("Number of stages = %d, number of executors = %d", config_.num_stages, config_.num_executors);
  196. GE_CHK_RT_RET(rtCtxGetCurrent(&config_.rt_context));
  197. GE_CHK_STATUS_RET_NOLOG(InitStageExecutors());
  198. return SUCCESS;
  199. }
  200. Status HybridModelPipelineExecutor::InitStageExecutors() {
  201. for (int i = 0; i < config_.num_executors; ++i) {
  202. auto stage_executor = std::unique_ptr<StageExecutor>(new (std::nothrow) StageExecutor(i, model_, &config_));
  203. GE_CHECK_NOTNULL(stage_executor);
  204. GE_CHK_STATUS_RET_NOLOG(stage_executor->Init());
  205. if (context_.profiler != nullptr) {
  206. // will call unique_ptr::release later
  207. stage_executor->context_.profiler.reset(context_.profiler.get());
  208. }
  209. stage_executors_.emplace_back(std::move(stage_executor));
  210. }
  211. // build propagation loop
  212. for (int i = 0; i < config_.num_executors - 1; ++i) {
  213. stage_executors_[i]->SetNext(stage_executors_[i + 1].get());
  214. }
  215. stage_executors_[config_.num_executors - 1]->SetNext(stage_executors_[0].get());
  216. return SUCCESS;
  217. }
  218. Status HybridModelPipelineExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) {
  219. int loop_count = args.num_loops;
  220. GE_CHECK_GE(loop_count, kMinLoopCount);
  221. auto &inputs = args.inputs;
  222. auto &input_desc = args.input_desc;
  223. // Start schedulers
  224. std::vector<std::future<Status>> futures;
  225. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  226. GELOGD("Starting executor %zu", i);
  227. auto executor = stage_executors_[i].get();
  228. executor->Reset();
  229. auto future = std::async(
  230. [loop_count, executor, inputs, input_desc]() { return executor->Start(inputs, input_desc, loop_count); });
  231. futures.emplace_back(std::move(future));
  232. }
  233. // Push initial tasks
  234. GELOGD("Start to execute with loops, loop count = %d", loop_count);
  235. config_.iteration_end = iteration_ + loop_count;
  236. for (int i = 0; i < config_.num_stages; ++i) {
  237. StageExecutor::StageTask task_info;
  238. task_info.stage = i;
  239. task_info.iteration = iteration_;
  240. stage_executors_[0]->ExecuteAsync(task_info);
  241. }
  242. // Wait for end of iterations
  243. bool has_error = false;
  244. for (size_t i = 0; i < stage_executors_.size(); ++i) {
  245. GELOGD("Start to sync result of executor[%zu]", i);
  246. auto ret = futures[i].get();
  247. if (ret != SUCCESS) {
  248. GELOGE(ret, "[Check][Result][Executor: %zu] Failed to schedule tasks.", i);
  249. REPORT_INNER_ERROR("E19999", "[Executor: %zu] Failed to schedule tasks.", i);
  250. has_error = true;
  251. continue;
  252. }
  253. ret = stage_executors_[i]->Synchronize();
  254. if (ret != SUCCESS) {
  255. auto model_manager = ModelManager::GetInstance();
  256. GE_CHECK_NOTNULL(model_manager);
  257. auto exception_infos = model_manager->GetExceptionInfos();
  258. if (!exception_infos.empty()) {
  259. HYBRID_CHK_STATUS_RET(context_.DumpExceptionInfo(exception_infos),
  260. "[Execute][GraphInternal] Dump exception info failed.");
  261. }
  262. GELOGE(ret, "[Invoke][Synchronize] failed for [Executor: %zu].", i);
  263. REPORT_CALL_ERROR("E19999", "[Executor: %zu] failed to Synchronize result.", i);
  264. has_error = true;
  265. continue;
  266. }
  267. }
  268. // record for profiling analyzer
  269. RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End");
  270. if (context_.profiler != nullptr) {
  271. context_.profiler->Dump(std::cout);
  272. }
  273. iteration_ = config_.iteration_end;
  274. if (has_error) {
  275. GELOGE(FAILED, "[Check][Error]Error occurred while execution.");
  276. REPORT_INNER_ERROR("E19999", "Error occurred while execution.");
  277. return FAILED;
  278. }
  279. auto last_iter_executor_idx = loop_count % stage_executors_.size();
  280. GE_CHK_STATUS_RET(stage_executors_[last_iter_executor_idx]->GetOutputs(args.outputs, args.output_desc),
  281. "[Get][Outputs]Failed from executor[%zu]", last_iter_executor_idx);
  282. return SUCCESS;
  283. }
  284. HybridModelPipelineExecutor::~HybridModelPipelineExecutor() {
  285. GELOGD("~HybridModelPipelineExecutor()");
  286. for (auto &executor : stage_executors_) {
  287. (void)executor->context_.profiler.release();
  288. }
  289. }
  290. } // namespace hybrid
  291. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示