You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

subgraph_executor.cc 31 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/subgraph_executor.h"
  17. #include "graph/ge_context.h"
  18. #include "hybrid/executor/worker/task_compile_engine.h"
  19. #include "hybrid/executor/worker/execution_engine.h"
  20. #include "hybrid/node_executor/node_executor.h"
  21. namespace ge {
  22. namespace hybrid {
  23. namespace {
  24. constexpr int kDefaultThreadNum = 4;
  25. constexpr int kDefaultQueueSize = 16;
  26. constexpr int kDataInputIndex = 0;
  27. }
  28. SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape)
  29. : graph_item_(graph_item),
  30. context_(context),
  31. force_infer_shape_(force_infer_shape),
  32. pre_run_pool_(kDefaultThreadNum),
  33. ready_queue_(kDefaultQueueSize) {
  34. }
  35. SubgraphExecutor::~SubgraphExecutor() {
  36. GELOGD("[%s] SubgraphExecutor destroyed.", graph_item_->GetName().c_str());
  37. }
  38. Status SubgraphExecutor::Init(const std::vector<TensorValue> &inputs,
  39. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  40. subgraph_context_.reset(new(std::nothrow)SubgraphContext(graph_item_, context_));
  41. GE_CHECK_NOTNULL(subgraph_context_);
  42. GE_CHK_STATUS_RET(subgraph_context_->Init(),
  43. "[Init][SubgraphContext][%s] Failed to init subgraph context.", graph_item_->GetName().c_str());
  44. shape_inference_engine_.reset(new(std::nothrow) ShapeInferenceEngine(context_, subgraph_context_.get()));
  45. GE_CHECK_NOTNULL(shape_inference_engine_);
  46. if (graph_item_->IsDynamic()) {
  47. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  48. "[%s] Failed to set inputs.",
  49. graph_item_->GetName().c_str());
  50. } else {
  51. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  52. "[Invoke][InitInputsForKnownShape][%s] Failed to init subgraph executor for known shape subgraph.",
  53. graph_item_->GetName().c_str());
  54. }
  55. return SUCCESS;
  56. }
  57. Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
  58. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  59. // Number of inputs of parent node should be greater or equal than that of subgraph
  60. auto input_nodes = graph_item_->GetInputNodes();
  61. if (inputs.size() < input_nodes.size()) {
  62. GELOGE(INTERNAL_ERROR,
  63. "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  64. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  65. REPORT_INNER_ERROR("E19999",
  66. "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
  67. graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
  68. return INTERNAL_ERROR;
  69. }
  70. for (size_t i = 0; i < input_nodes.size(); ++i) {
  71. auto &input_node = input_nodes[i];
  72. if (input_node == nullptr) {
  73. GELOGD("[%s] Input[%zu] is not needed by subgraph, skip it.", graph_item_->GetName().c_str(), i);
  74. continue;
  75. }
  76. auto &input_tensor = inputs[i];
  77. GELOGD("[%s] Set input tensor[%zu] to inputs with index = %d, tensor = %s",
  78. graph_item_->GetName().c_str(),
  79. i,
  80. input_node->input_start,
  81. input_tensor.DebugString().c_str());
  82. GE_CHK_STATUS_RET(subgraph_context_->SetInput(*input_node, kDataInputIndex, input_tensor),
  83. "[Invoke][SetInput] failed for grap_item[%s] input tensor[%zu]",
  84. graph_item_->GetName().c_str(), i);
  85. if (force_infer_shape_ || input_node->is_dynamic) {
  86. GELOGD("[%s] Start to update input[%zu] for subgraph data node.", graph_item_->GetName().c_str(), i);
  87. GE_CHECK_LE(i + 1, input_desc.size());
  88. const auto &tensor_desc = input_desc[i];
  89. GE_CHECK_NOTNULL(tensor_desc);
  90. auto node_state = subgraph_context_->GetOrCreateNodeState(input_node);
  91. GE_CHECK_NOTNULL(node_state);
  92. node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc);
  93. auto op_desc = input_node->GetOpDesc();
  94. GE_CHECK_NOTNULL(op_desc);
  95. auto output_desc = op_desc->MutableOutputDesc(kDataInputIndex);
  96. GE_CHECK_NOTNULL(output_desc);
  97. output_desc->SetShape(tensor_desc->GetShape());
  98. output_desc->SetOriginShape(tensor_desc->GetOriginShape());
  99. node_state->SetSkipInferShape(true);
  100. }
  101. }
  102. GELOGD("[%s] Done setting inputs.", graph_item_->GetName().c_str());
  103. return SUCCESS;
  104. }
  105. Status SubgraphExecutor::InitInputsForKnownShape(const std::vector<TensorValue> &inputs) {
  106. auto &input_index_mapping = graph_item_->GetInputIndexMapping();
  107. for (size_t i = 0; i < input_index_mapping.size(); ++i) {
  108. auto &parent_input_index = input_index_mapping[i];
  109. if (static_cast<size_t>(parent_input_index) >= inputs.size()) {
  110. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Number of inputs [%zu] is not sufficient for subgraph"
  111. "which needs at lease [%d] inputs", graph_item_->GetName().c_str(), inputs.size(),
  112. parent_input_index + 1);
  113. REPORT_INNER_ERROR("E19999", "[%s] Number of inputs [%zu] is not sufficient for subgraph"
  114. "which needs at lease [%d] inputs",
  115. graph_item_->GetName().c_str(), inputs.size(), parent_input_index + 1);
  116. return INTERNAL_ERROR;
  117. }
  118. auto &input_tensor = inputs[parent_input_index];
  119. subgraph_context_->SetInput(static_cast<int>(i), input_tensor);
  120. GELOGD("[%s] Set input tensor[%zu] with inputs with index = %d, tensor = %s",
  121. graph_item_->GetName().c_str(),
  122. i,
  123. parent_input_index,
  124. input_tensor.DebugString().c_str());
  125. }
  126. return SUCCESS;
  127. }
  128. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  129. const std::vector<ConstGeTensorDescPtr> &input_desc,
  130. const std::vector<TensorValue> &outputs) {
  131. GELOGD("[%s] is dynamic = %s", graph_item_->GetName().c_str(), graph_item_->IsDynamic() ? "true" : "false");
  132. GE_CHK_STATUS_RET(Init(inputs, input_desc), "[Invoke][Init]failed for [%s].", graph_item_->GetName().c_str());
  133. if (!outputs.empty()) {
  134. GE_CHK_STATUS_RET(EnableOutputZeroCopy(outputs),
  135. "[Invoke][EnableOutputZeroCopy] Failed by user provided outputs.");
  136. }
  137. if (!graph_item_->IsDynamic()) {
  138. return ExecuteAsyncForKnownShape(inputs);
  139. }
  140. HYBRID_CHK_STATUS_RET(ScheduleTasks(), "[%s] Failed to execute tasks.", graph_item_->GetName().c_str());
  141. GELOGD("[%s] Done executing subgraph successfully.", graph_item_->GetName().c_str());
  142. return SUCCESS;
  143. }
  144. Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
  145. const std::vector<ConstGeTensorDescPtr> &input_desc) {
  146. return ExecuteAsync(inputs, input_desc, {});
  147. }
  148. Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs) {
  149. GELOGD("[%s] subgraph is not dynamic.", graph_item_->GetName().c_str());
  150. if (graph_item_->GetAllNodes().size() != 1) {
  151. REPORT_INNER_ERROR("E19999", "[%s] Invalid known shape subgraph. node size = %zu",
  152. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  153. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] Invalid known shape subgraph. node size = %zu",
  154. graph_item_->GetName().c_str(), graph_item_->GetAllNodes().size());
  155. return INTERNAL_ERROR;
  156. }
  157. auto node_item = graph_item_->GetAllNodes()[0];
  158. GE_CHECK_NOTNULL(node_item);
  159. auto node_state = subgraph_context_->GetOrCreateNodeState(node_item);
  160. GE_CHECK_NOTNULL(node_state);
  161. node_state->SetKernelTask(node_item->kernel_task);
  162. std::function<void()> callback;
  163. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state.get(), callback));
  164. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, node_state->GetTaskContext(), *context_, callback),
  165. "[%s] Failed to execute node [%s] for known subgraph.",
  166. graph_item_->GetName().c_str(),
  167. node_state->GetName().c_str());
  168. GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str());
  169. return SUCCESS;
  170. }
  171. Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
  172. std::vector<TensorValue> inputs;
  173. std::vector<ConstGeTensorDescPtr> input_desc;
  174. for (int i = 0; i < task_context.NumInputs(); ++i) {
  175. auto tensor = task_context.GetInput(i);
  176. GE_CHECK_NOTNULL(tensor);
  177. inputs.emplace_back(*tensor);
  178. input_desc.emplace_back(task_context.GetInputDesc(i));
  179. }
  180. GE_CHK_STATUS_RET(ExecuteAsync(inputs, input_desc), "[Invoke][ExecuteAsync] failed for [%s].",
  181. graph_item_->GetName().c_str());
  182. GE_CHK_STATUS_RET(SetOutputsToParentNode(task_context),
  183. "[Invoke][SetOutputsToParentNode][%s] Failed to set output shapes to parent node.",
  184. graph_item_->GetName().c_str());
  185. return SUCCESS;
  186. }
  187. BlockingQueue<const NodeItem *> &SubgraphExecutor::GetPrepareQueue(int group) {
  188. std::lock_guard<std::mutex> lk(mu_);
  189. return prepare_queues_[group];
  190. }
  191. Status SubgraphExecutor::NodeEnqueue(NodeState *node_state) {
  192. if (!ready_queue_.Push(node_state)) {
  193. if (context_->is_eos_) {
  194. GELOGD("Got end of sequence");
  195. return SUCCESS;
  196. }
  197. GELOGE(INTERNAL_ERROR, "[Check][State][%s] Error occurs while launching tasks. quit from preparing nodes.",
  198. graph_item_->GetName().c_str());
  199. REPORT_INNER_ERROR("E19999", "[%s] Error occurs while launching tasks. quit from preparing nodes.",
  200. graph_item_->GetName().c_str());
  201. return INTERNAL_ERROR;
  202. }
  203. GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_state->GetName().c_str());
  204. return SUCCESS;
  205. }
  206. Status SubgraphExecutor::PrepareNode(const NodeItem &node_item, int group) {
  207. GELOGD("[%s] Start to prepare node [%s].", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
  208. // for while op
  209. if (force_infer_shape_ && !node_item.is_dynamic) {
  210. GELOGD("[%s] Force infer shape is set, updating node to dynamic.", node_item.NodeName().c_str());
  211. auto &mutable_node_item = const_cast<NodeItem &>(node_item);
  212. mutable_node_item.SetToDynamic();
  213. }
  214. auto node_state = subgraph_context_->GetOrCreateNodeState(&node_item);
  215. GE_CHECK_NOTNULL(node_state);
  216. auto p_node_state = node_state.get();
  217. if (node_item.node_type == NETOUTPUT) {
  218. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  219. return AfterPrepared(p_node_state);
  220. }
  221. // only do shape inference and compilation for nodes with dynamic shapes.
  222. if (node_item.is_dynamic) {
  223. auto prepare_future = pre_run_pool_.commit([this, p_node_state]() -> Status {
  224. GetContext().SetSessionId(context_->session_id);
  225. GetContext().SetContextId(context_->context_id);
  226. GE_CHK_STATUS_RET_NOLOG(InferShape(shape_inference_engine_.get(), *p_node_state));
  227. GE_CHK_STATUS_RET_NOLOG(PrepareForExecution(context_, *p_node_state));
  228. return AfterPrepared(p_node_state);
  229. });
  230. p_node_state->SetPrepareFuture(std::move(prepare_future));
  231. return NodeEnqueue(p_node_state);
  232. } else {
  233. GELOGD("[%s] Skipping shape inference and compilation for node with static shape.",
  234. node_item.NodeName().c_str());
  235. if (node_item.kernel_task == nullptr) {
  236. GELOGW("[%s] Node of static shape got no task.", node_item.NodeName().c_str());
  237. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(*p_node_state, context_),
  238. "[Invoke][Compile] failed for [%s].", p_node_state->GetName().c_str());
  239. } else {
  240. node_state->SetKernelTask(node_item.kernel_task);
  241. }
  242. const auto &task = node_state->GetKernelTask();
  243. if (task == nullptr) {
  244. GELOGE(INTERNAL_ERROR, "[Get][KernelTask] failed for[%s], NodeTask is null.", node_state->GetName().c_str());
  245. REPORT_CALL_ERROR("E19999", "GetKernelTask failed for %s, nodetask is null.", node_state->GetName().c_str());
  246. return INTERNAL_ERROR;
  247. }
  248. GE_CHK_STATUS_RET_NOLOG(NodeEnqueue(p_node_state));
  249. return AfterPrepared(p_node_state);
  250. }
  251. }
  252. Status SubgraphExecutor::PrepareNodes(int group) {
  253. const size_t node_size = graph_item_->GetNodeSize(group);
  254. GELOGD("[%s] Start to prepare nodes. group = %d, size = %zu", graph_item_->GetName().c_str(), group, node_size);
  255. if (!graph_item_->HasCtrlFlowOp()) {
  256. for (const auto &node_item : graph_item_->GetAllNodes(group)) {
  257. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  258. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  259. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  260. }
  261. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  262. return SUCCESS;
  263. }
  264. // Initialize the ready queue
  265. size_t node_count = 0;
  266. bool node_complete = false;
  267. for (const auto &node_item : graph_item_->GetRootNodes(group)) {
  268. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  269. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  270. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  271. node_complete = node_item->NodeType() == NETOUTPUT;
  272. node_count++;
  273. }
  274. GELOGD("[%s] Done preparing root nodes.", graph_item_->GetName().c_str());
  275. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  276. while (((group != -1) && (node_count < node_size)) || ((group == -1) && !node_complete)) {
  277. const NodeItem *node_item = nullptr;
  278. if (!prepare_queue.Pop(node_item)) {
  279. if (context_->is_eos_) {
  280. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  281. break;
  282. }
  283. if (context_->GetStatus() != SUCCESS) {
  284. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  285. return SUCCESS;
  286. }
  287. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  288. return INTERNAL_ERROR;
  289. }
  290. if (node_item == nullptr) {
  291. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  292. break;
  293. }
  294. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] Start");
  295. GE_CHK_STATUS_RET(PrepareNode(*node_item, group), "[%s] failed to prepare task.", node_item->NodeName().c_str());
  296. RECORD_EXECUTION_EVENT(context_, node_item->NodeName().c_str(), "[PrepareNode] End");
  297. node_complete = node_item->NodeType() == NETOUTPUT;
  298. node_count++;
  299. }
  300. GELOGD("[%s] Done preparing nodes successfully.", graph_item_->GetName().c_str());
  301. return SUCCESS;
  302. }
  303. Status SubgraphExecutor::NodeScheduled(NodeState *node_state) {
  304. GELOGD("Graph[%s] After [%s] scheduled, data size: %zu, ctrl size: %zu, switch index: %d, merge index: %d",
  305. graph_item_->GetName().c_str(), node_state->GetName().c_str(),
  306. node_state->GetNodeItem()->data_send_.size(), node_state->GetNodeItem()->ctrl_send_.size(),
  307. node_state->GetSwitchIndex(), node_state->GetMergeIndex());
  308. auto future = pre_run_pool_.commit([this, node_state]() -> Status {
  309. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] Start");
  310. std::function<void(const NodeItem *)> callback = [&](const NodeItem *node_item) {
  311. const auto &node_name = node_item->node_name;
  312. int group = (node_state->GetGroup() != -1) ? node_item->group : -1;
  313. GELOGI("After [%s] scheduled, [%s] is ready for prepare.", node_state->GetName().c_str(), node_name.c_str());
  314. BlockingQueue<const NodeItem *> &prepare_queue = GetPrepareQueue(group);
  315. if (!prepare_queue.Push(node_item)) {
  316. if (!context_->is_eos_) {
  317. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  318. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  319. }
  320. }
  321. };
  322. GE_CHK_STATUS_RET_NOLOG(node_state->NodeScheduled(callback));
  323. RECORD_CALLBACK_EVENT(context_, node_state->GetName().c_str(), "[NodeScheduled] End");
  324. return SUCCESS;
  325. });
  326. node_state->SetScheduleFuture(std::move(future));
  327. if (schedule_queue_.Push(node_state)) {
  328. return SUCCESS;
  329. }
  330. if (context_->is_eos_) {
  331. GELOGD("[%s] Got end of sequence", graph_item_->GetName().c_str());
  332. return SUCCESS;
  333. }
  334. GELOGE(INTERNAL_ERROR, "[Check][State][%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  335. REPORT_INNER_ERROR("E19999", "[%s] error occurs when push to queue.", graph_item_->GetName().c_str());
  336. return INTERNAL_ERROR;
  337. }
  338. Status SubgraphExecutor::AfterPrepared(NodeState *node_state) {
  339. if (!graph_item_->HasCtrlFlowOp()) {
  340. return SUCCESS;
  341. }
  342. if (node_state->IsShapeDependence()) {
  343. return SUCCESS;
  344. }
  345. // Not control flow node, propagate state.
  346. return NodeScheduled(node_state);
  347. }
  348. void SubgraphExecutor::AfterExecuted(NodeState *node_state) {
  349. if (!node_state->IsShapeDependence()) {
  350. return;
  351. }
  352. // For control flow node, propagate state.
  353. auto error = NodeScheduled(node_state);
  354. if (error != SUCCESS) {
  355. auto task_context = node_state->GetTaskContext();
  356. task_context->OnError(error);
  357. }
  358. }
  359. void SubgraphExecutor::OnNodeDone(NodeState *node_state) {
  360. auto task_context = node_state->GetTaskContext();
  361. NodeDoneCallback cb(context_, task_context);
  362. auto error = cb.OnNodeDone();
  363. if (error != SUCCESS) {
  364. task_context->OnError(error);
  365. }
  366. if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  367. AfterExecuted(node_state);
  368. }
  369. }
  370. Status SubgraphExecutor::InitCallback(NodeState *node_state, std::function<void()> &callback) {
  371. auto task_context = node_state->GetTaskContext();
  372. GE_CHECK_NOTNULL(task_context);
  373. if (task_context->NeedCallback()) {
  374. callback = std::bind(&SubgraphExecutor::OnNodeDone, this, node_state);
  375. } else if (node_state->IsShapeDependence() && graph_item_->HasCtrlFlowOp()) {
  376. callback = std::bind(&SubgraphExecutor::AfterExecuted, this, node_state);
  377. }
  378. return SUCCESS;
  379. }
  380. Status SubgraphExecutor::ScheduleNodes() {
  381. GELOGD("[%s] Start to schedule nodes.", graph_item_->GetName().c_str());
  382. while (true) {
  383. NodeState *node_state = nullptr;
  384. if (!schedule_queue_.Pop(node_state)) {
  385. if (context_->is_eos_) {
  386. GELOGD("[%s] Got end of sequence.", graph_item_->GetName().c_str());
  387. break;
  388. }
  389. if (context_->GetStatus() != SUCCESS) {
  390. GELOGD("[%s] Graph execution Got failed.", graph_item_->GetName().c_str());
  391. return SUCCESS;
  392. }
  393. GELOGE(INTERNAL_ERROR, "[%s] failed to pop node.", graph_item_->GetName().c_str());
  394. return INTERNAL_ERROR;
  395. }
  396. if (node_state == nullptr) {
  397. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  398. break;
  399. }
  400. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForScheduleDone());
  401. }
  402. GELOGD("[%s] Done schedule nodes successfully.", graph_item_->GetName().c_str());
  403. return SUCCESS;
  404. }
  405. Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) const {
  406. HYBRID_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
  407. "[Invoke][InferShape] failed for [%s].", node_state.GetName().c_str());
  408. HYBRID_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_state),
  409. "[Invoke][PropagateOutputShapes] failed for [%s].", node_state.GetName().c_str());
  410. return SUCCESS;
  411. }
  412. Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state) {
  413. auto &node_item = *node_state.GetNodeItem();
  414. if (node_item.kernel_task == nullptr) {
  415. GE_CHK_STATUS_RET(TaskCompileEngine::Compile(node_state, ctx),
  416. "[Invoke][Compile] Failed for node[%s]", node_state.GetName().c_str());
  417. } else {
  418. node_state.SetKernelTask(node_item.kernel_task);
  419. }
  420. const auto &task = node_state.GetKernelTask();
  421. if (task == nullptr) {
  422. GELOGE(INTERNAL_ERROR, "[Invoke][GetKernelTask] failed for[%s], NodeTask is null.", node_state.GetName().c_str());
  423. REPORT_CALL_ERROR("E19999", "invoke GetKernelTask failed for %s, NodeTask is null.", node_state.GetName().c_str());
  424. return INTERNAL_ERROR;
  425. }
  426. GE_CHK_RT_RET(rtCtxSetCurrent(ctx->rt_context));
  427. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] start");
  428. GE_CHK_STATUS_RET_NOLOG(task->UpdateTilingData(*node_state.GetTaskContext())); // update op_desc before alloc ws
  429. RECORD_COMPILE_EVENT(ctx, node_item.NodeName().c_str(), "[UpdateTilingData] end");
  430. return SUCCESS;
  431. }
  432. Status SubgraphExecutor::LaunchTasks() {
  433. while (true) {
  434. NodeState *node_state = nullptr;
  435. if (!ready_queue_.Pop(node_state)) {
  436. GELOGE(INTERNAL_ERROR, "[Invoke][Pop] failed for [%s].", graph_item_->GetName().c_str());
  437. REPORT_CALL_ERROR("E19999", "invoke pop failed for %s.", graph_item_->GetName().c_str());
  438. return INTERNAL_ERROR;
  439. }
  440. if (node_state == nullptr) {
  441. GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
  442. return SUCCESS;
  443. }
  444. if (node_state->GetType() == NETOUTPUT) {
  445. // Wait for all inputs become valid
  446. // after PrepareNodes returned. all output tensors and shapes are valid
  447. GE_CHK_STATUS_RET_NOLOG(node_state->GetShapeInferenceState().AwaitShapesReady(*context_));
  448. GE_CHK_STATUS_RET_NOLOG(node_state->AwaitInputTensors(*context_));
  449. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  450. continue;
  451. }
  452. GE_CHK_STATUS_RET_NOLOG(node_state->WaitForPrepareDone());
  453. GELOGD("[%s] Start to execute.", node_state->GetName().c_str());
  454. auto shared_task_context = node_state->GetTaskContext();
  455. GE_CHECK_NOTNULL(shared_task_context);
  456. shared_task_context->SetForceInferShape(force_infer_shape_);
  457. std::function<void()> callback;
  458. GE_CHK_STATUS_RET_NOLOG(InitCallback(node_state, callback));
  459. HYBRID_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, shared_task_context, *context_, callback),
  460. "[Invoke][ExecuteAsync] failed for [%s].", node_state->GetName().c_str());
  461. GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
  462. }
  463. }
  464. Status SubgraphExecutor::ScheduleTasks(int group) {
  465. GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
  466. subgraph_context_->SetGroup(group);
  467. auto prepare_future = std::async(std::launch::async, [&]() -> Status {
  468. GetContext().SetSessionId(context_->session_id);
  469. GetContext().SetContextId(context_->context_id);
  470. auto ret = PrepareNodes(group);
  471. ready_queue_.Push(nullptr);
  472. schedule_queue_.Push(nullptr);
  473. for (auto &item : prepare_queues_) {
  474. item.second.Push(nullptr);
  475. }
  476. return ret;
  477. });
  478. auto schedule_future = std::async(std::launch::async, [&]() -> Status {
  479. return ScheduleNodes();
  480. });
  481. GELOGD("[%s] Start to execute subgraph.", graph_item_->GetName().c_str());
  482. auto ret = LaunchTasks();
  483. if (ret != SUCCESS) {
  484. subgraph_context_->OnError(ret);
  485. context_->SetErrorCode(ret);
  486. ready_queue_.Stop();
  487. schedule_queue_.Stop();
  488. for (auto &item : prepare_queues_) {
  489. item.second.Stop();
  490. }
  491. prepare_future.wait();
  492. schedule_future.wait();
  493. return ret;
  494. }
  495. GE_CHK_STATUS_RET(prepare_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  496. graph_item_->GetName().c_str());
  497. GE_CHK_STATUS_RET(schedule_future.get(), "[Invoke][get] [%s] Error occurred in task preparation.",
  498. graph_item_->GetName().c_str());
  499. GELOGD("[%s] Done launching all tasks successfully.", graph_item_->GetName().c_str());
  500. return SUCCESS;
  501. }
  502. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs) {
  503. return subgraph_context_->GetOutputs(outputs);
  504. }
  505. Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc) {
  506. GE_CHK_STATUS_RET(GetOutputs(outputs), "[Invoke][GetOutputs] failed for [%s].", graph_item_->GetName().c_str());
  507. // copy output data from op to designated position
  508. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc),
  509. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  510. graph_item_->GetName().c_str());
  511. if (outputs.size() != output_desc.size()) {
  512. GELOGE(INTERNAL_ERROR, "[Check][Size]Number of outputs(%zu) mismatch number of output_desc(%zu).",
  513. outputs.size(), output_desc.size());
  514. REPORT_INNER_ERROR("E19999", "Number of outputs(%zu) mismatch number of output_desc(%zu).",
  515. outputs.size(), output_desc.size());
  516. return INTERNAL_ERROR;
  517. }
  518. return SUCCESS;
  519. }
  520. Status SubgraphExecutor::Synchronize() {
  521. GELOGD("[%s] Synchronize start.", graph_item_->GetName().c_str());
  522. GE_CHK_STATUS_RET_NOLOG(context_->Synchronize(context_->stream));
  523. GELOGD("[%s] Done synchronizing successfully.", graph_item_->GetName().c_str());
  524. return SUCCESS;
  525. }
  526. Status SubgraphExecutor::SetOutputsToParentNode(TaskContext &task_context) {
  527. // get output tensors and tensor desc list
  528. std::vector<TensorValue> outputs;
  529. std::vector<ConstGeTensorDescPtr> output_desc_list;
  530. GE_CHK_STATUS_RET(subgraph_context_->GetOutputs(outputs), "[Invoke][GetOutputs][%s] Failed to get output tensors.",
  531. graph_item_->GetName().c_str());
  532. GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc_list),
  533. "[Invoke][GetOutputDescList][%s] Failed to get output tensor desc.",
  534. graph_item_->GetName().c_str());
  535. if (outputs.size() != output_desc_list.size()) {
  536. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] num of output tensors = %zu, num of output tensor desc = %zu not equal",
  537. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  538. REPORT_INNER_ERROR("E19999", "%s num of output tensors = %zu, num of output tensor desc = %zu not equal",
  539. graph_item_->GetName().c_str(), outputs.size(), output_desc_list.size());
  540. return INTERNAL_ERROR;
  541. }
  542. // mapping to parent task context
  543. for (size_t i = 0; i < outputs.size(); ++i) {
  544. int parent_output_index = graph_item_->GetParentOutputIndex(i);
  545. GE_CHECK_GE(parent_output_index, 0);
  546. // update tensor
  547. GELOGD("[%s] Updating output[%zu] to parent output[%d]",
  548. graph_item_->GetName().c_str(),
  549. i,
  550. parent_output_index);
  551. GELOGD("[%s] Updating output tensor, index = %d, tensor = %s",
  552. graph_item_->GetName().c_str(),
  553. parent_output_index,
  554. outputs[i].DebugString().c_str());
  555. GE_CHK_STATUS_RET(task_context.SetOutput(parent_output_index, outputs[i]));
  556. // updating shapes. dynamic format/dtype is not supported.
  557. // It should be noted that even the subgraph is of known shape, it is also necessary to update parent output desc,
  558. // for instance, IfOp may have two known-shaped subgraphs of different output shapes
  559. const auto &output_desc = output_desc_list[i];
  560. auto parent_output_desc = task_context.MutableOutputDesc(parent_output_index);
  561. GE_CHECK_NOTNULL(parent_output_desc);
  562. GELOGD("[%s] Updating output shape[%d] from [%s] to [%s]",
  563. graph_item_->GetName().c_str(),
  564. parent_output_index,
  565. parent_output_desc->MutableShape().ToString().c_str(),
  566. output_desc->GetShape().ToString().c_str());
  567. parent_output_desc->SetShape(output_desc->GetShape());
  568. GELOGD("[%s] Updating output original shape[%d] from [%s] to [%s]",
  569. graph_item_->GetName().c_str(),
  570. parent_output_index,
  571. parent_output_desc->GetOriginShape().ToString().c_str(),
  572. output_desc->GetOriginShape().ToString().c_str());
  573. parent_output_desc->SetOriginShape(output_desc->GetOriginShape());
  574. }
  575. return SUCCESS;
  576. }
  577. Status SubgraphExecutor::EnableOutputZeroCopy(const vector<TensorValue> &outputs) {
  578. GELOGD("To enable zero copy, output number = %zu", outputs.size());
  579. const auto &output_edges = graph_item_->GetOutputEdges();
  580. // Op -> MetOutput, set the output tensor of Op that output to the NetOutput node
  581. if (outputs.size() != output_edges.size()) {
  582. GELOGE(PARAM_INVALID, "[Check][Size]Output number mismatches, expect = %zu, but given = %zu",
  583. output_edges.size(), outputs.size());
  584. REPORT_INNER_ERROR("E19999", "Output number mismatches, expect = %zu, but given = %zu",
  585. output_edges.size(), outputs.size());
  586. return PARAM_INVALID;
  587. }
  588. for (size_t i = 0; i < outputs.size(); ++i) {
  589. auto &output_tensor = outputs[i];
  590. auto &output_node = output_edges[i].first;
  591. int output_idx = output_edges[i].second;
  592. GELOGD("[%s] Set output tensor[%zu] to [%s]'s output[%d], tensor = %s",
  593. graph_item_->GetName().c_str(),
  594. i,
  595. output_node->NodeName().c_str(),
  596. output_idx,
  597. output_tensor.DebugString().c_str());
  598. GE_CHK_STATUS_RET(subgraph_context_->SetOutput(*output_node, output_idx, output_tensor),
  599. "[Invoke][SetOutput][%s] Failed to set input tensor[%zu]",
  600. graph_item_->GetName().c_str(), i);
  601. }
  602. GELOGD("Done enabling zero copy for outputs successfully.");
  603. return SUCCESS;
  604. }
  605. Status SubgraphExecutor::PartialExecuteAsync(int task_group) {
  606. return ScheduleTasks(task_group);
  607. }
  608. Status SubgraphExecutor::InitForPartialExecution(const vector<TensorValue> &inputs,
  609. const vector<ConstGeTensorDescPtr> &input_desc) {
  610. if (subgraph_context_ == nullptr) {
  611. return Init(inputs, input_desc);
  612. }
  613. subgraph_context_->Reset();
  614. if (graph_item_->IsDynamic()) {
  615. GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
  616. "[%s] Failed to set inputs.",
  617. graph_item_->GetName().c_str());
  618. } else {
  619. GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
  620. "[Invoke][InitInputsForKnownShape][%s] Failed to init subgraph executor for known shape subgraph",
  621. graph_item_->GetName().c_str());
  622. }
  623. return SUCCESS;
  624. }
  625. } // namespace hybrid
  626. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示