You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

vector_search.h 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. /**
  2. * Copyright 2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file vector_search.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. * @brief Generate ADC(asymmetric distance computation) table. \n
  26. *
  27. * @par Inputs:
  28. * Four inputs, including:
  29. * @li query: A Tensor. Must be one of the following types: float16, float32.
  30. * @li code_book: A Tensor. Must be one of the following types: float16, float32.
  31. * @li centroids: A Tensor. Must be one of the following types: float16, float32.
  32. * @li bucket_list: A Tensor. Must be one of the following types: int32, int64.
  33. *
  34. * @par Outputs:
  35. * adc_tables: A Tensor. Must be one of the following types: float16, float32.
  36. */
  37. REG_OP(GenADC)
  38. .INPUT(query, TensorType({DT_FLOAT16, DT_FLOAT}))
  39. .INPUT(code_book, TensorType({DT_FLOAT16, DT_FLOAT}))
  40. .INPUT(centroids, TensorType({DT_FLOAT16, DT_FLOAT}))
  41. .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
  42. .OUTPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
  43. .OP_END_FACTORY_REG(GenADC)
  44. /**
  45. * @brief Finds values and indices of the "k" largest or least elements for the last dimension. \n
  46. *
  47. * @par Inputs:
  48. * Dynamin inputs, including:
  49. * @li actual_count: A Tensor of type int32, the actual number of pq_distance.
  50. * @li pq_distance: A Tensor, Will be updated after calculation. Must be one of the following types: float32, float16.
  51. * @li grouped_extreme_distance: A Tensor, the extremum in each group. Must be one of the following types: float32, float16.
  52. * @li pq_index: A Tensor of type int32, index corresponding to pq_distance.
  53. * @li pq_ivf: A Tensor of type int32 , the bucket number corresponding to pq_distance.
  54. *
  55. * @par Attributes:
  56. * @li order: A string, indicates the sorting method of topk_pq_distance. \n
  57. * @li k: Int, k maximum or minimum values. \n
  58. * @li group_size: Int, the group size of the extremum. \n
  59. *
  60. * @par Restrictions:
  61. * Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  62. */
  63. REG_OP(TopKPQDistance)
  64. .DYNAMIC_INPUT(actual_count, TensorType({DT_INT32}))
  65. .DYNAMIC_INPUT(pq_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  66. .DYNAMIC_INPUT(grouped_extreme_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  67. .DYNAMIC_INPUT(pq_ivf, TensorType({DT_INT32}))
  68. .DYNAMIC_INPUT(pq_index, TensorType({DT_INT32}))
  69. .OUTPUT(topk_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  70. .OUTPUT(topk_ivf, TensorType({DT_INT32}))
  71. .OUTPUT(topk_index, TensorType({DT_INT32}))
  72. .ATTR(order, String, "ASC")
  73. .ATTR(k, Int, 0)
  74. .ATTR(group_size, Int, 0)
  75. .OP_END_FACTORY_REG(TopKPQDistance)
  76. /**
  77. * @brief Calculate PQ distance. \n
  78. *
  79. * @par Inputs:
  80. * Six inputs, including:
  81. * @li ivf: A Tensor, dtype is uint8.
  82. * @li bucket_list: A Tensor, dtype is int32.
  83. * @li bucket_base_distance: A Tensor, dtype is float16.
  84. * @li bucket_limits: A Tensor, dtype is int32.
  85. * @li bucket_offsets: A Tensor, dtype is int32.
  86. * @li adc_tables: A Tensor. dtype is float16. \n
  87. *
  88. * @par Outputs:
  89. * Five outputs, including:
  90. * @li actual_count: A Tensor, dtype is int32, the first element means the length of processed ivf.
  91. * @li pq_distance: A Tensor, dtype is float16.
  92. * @li grouped_extreme_distance: A Tensor, dtype is float16.
  93. * @li pq_ivf: A Tensor, dtype is int32.
  94. * @li pq_index: A Tensor, dtype is int32. \n
  95. *
  96. * @par Attributes:
  97. * Five attributes, including:
  98. * @li group_size: A Scalar, indicates the group size when compute grouped_extreme_distance.
  99. * @li total_limit: A Scalar, indicates the total length of the outputs.
  100. * @li extreme_mode: A Scalar, indicates the type of extremum, 0 means minimum, and 1 means maximum.
  101. * @li split_count: A Scalar.
  102. * @li split_index: A Scalar. \n
  103. *
  104. */
  105. REG_OP(ScanPQCodes)
  106. .INPUT(ivf, TensorType({DT_UINT8}))
  107. .INPUT(bucket_list, TensorType({DT_INT32, DT_INT64}))
  108. .INPUT(bucket_base_distance, TensorType({DT_FLOAT16, DT_FLOAT}))
  109. .INPUT(bucket_limits, TensorType({DT_INT32}))
  110. .INPUT(bucket_offsets, TensorType({DT_INT64}))
  111. .INPUT(adc_tables, TensorType({DT_FLOAT16, DT_FLOAT}))
  112. .OUTPUT(actual_count, TensorType({DT_INT32}))
  113. .OUTPUT(pq_distance, TensorType({DT_FLOAT16}))
  114. .OUTPUT(grouped_extreme_distance, TensorType({DT_FLOAT16}))
  115. .OUTPUT(pq_ivf, TensorType({DT_INT32}))
  116. .OUTPUT(pq_index, TensorType({DT_INT32}))
  117. .REQUIRED_ATTR(total_limit, Int)
  118. .ATTR(group_size, Int, 64)
  119. .ATTR(extreme_mode, Int, 0)
  120. .ATTR(split_count, Int, 1)
  121. .ATTR(split_index, Int, 0)
  122. .OP_END_FACTORY_REG(ScanPQCodes)
  123. } // namespace ge
  124. #endif // OPS_BUILT_IN_OP_PROTO_INC_VECTOR_SEARCH_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示