You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_mem_assigner.cc 72 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/build/memory/graph_mem_assigner.h"
  17. #include <cstring>
  18. #include <set>
  19. #include "common/math/math_util.h"
  20. #include "common/util/error_manager/error_manager.h"
  21. #include "framework/common/debug/ge_log.h"
  22. #include "framework/common/debug/log.h"
  23. #include "graph/build/memory/hybrid_mem_assigner.h"
  24. #include "graph/build/memory/var_mem_assign_util.h"
  25. #include "graph/build/memory/block_mem_assigner.h"
  26. #include "graph/common/omg_util.h"
  27. #include "graph/debug/ge_attr_define.h"
  28. #include "graph/ge_attr_value.h"
  29. #include "graph/manager/graph_var_manager.h"
  30. #include "graph/utils/tensor_utils.h"
  31. #include "graph/utils/type_utils.h"
  32. namespace {
  33. const int kAllInputAddrIsAtomic = -1;
  34. const int kVirtualInputNodeMemoryReuse = 0;
  35. const int kVirtualOutputNodeMemoryReuse = 1;
  36. // One state per bit cannot be repeated
  37. enum ContinuousType { kTypeInput = 1, kTypeInputNoPadding = 2, kTypeOutput = 4, kTypeOutputNoPadding = 8 };
  38. int64_t GetSymbolOutputOffset(const std::map<std::string, std::string> &anchor_to_symbol,
  39. const std::map<std::string, std::list<ge::NodeIndexIO>> &symbol_to_anchors,
  40. const ge::NodePtr &node, const uint32_t i) {
  41. ge::NodeIndexIO cur_node_index_io(node, i, ge::kOut);
  42. auto iter1 = anchor_to_symbol.find(cur_node_index_io.ToString());
  43. if (iter1 == anchor_to_symbol.end()) {
  44. return ge::kInvalidOffset;
  45. }
  46. auto out_symbol = iter1->second;
  47. auto iter2 = symbol_to_anchors.find(out_symbol);
  48. if (iter2 == symbol_to_anchors.end()) {
  49. return ge::kInvalidOffset;
  50. }
  51. for (const auto &node_index_io : iter2->second) {
  52. if (node_index_io.value_ == out_symbol) {
  53. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  54. vector<int64_t> symbol_output_list = node_index_io.node_->GetOpDesc()->GetOutputOffset();
  55. if (node_index_io.index_ >= symbol_output_list.size()) {
  56. return ge::kInvalidOffset;
  57. }
  58. GELOGD("Node %s %uth output offset is %ld, Symbol %s output offset is %ld.", node->GetName().c_str(), i,
  59. output_list[i], iter2->first.c_str(), symbol_output_list.at(node_index_io.index_));
  60. return symbol_output_list.at(node_index_io.index_);
  61. }
  62. }
  63. return ge::kInvalidOffset;
  64. }
  65. } // namespace
  66. namespace ge {
  67. Status VariableMemoryAssigner::Assign() {
  68. Status result = ge::VarMemAssignUtil::AssignConstantOpMemory(compute_graph_);
  69. if (result != ge::SUCCESS) {
  70. return result;
  71. }
  72. result = ge::VarMemAssignUtil::AssignVarMemory(compute_graph_);
  73. if (result != ge::SUCCESS) {
  74. return result;
  75. }
  76. return ge::SUCCESS;
  77. }
  78. Status VariableMemoryAssigner::AssignVarAttr2Nodes() {
  79. Status result = ge::VarMemAssignUtil::AssignVarAttr2Nodes(compute_graph_);
  80. if (result != ge::SUCCESS) {
  81. return result;
  82. }
  83. return ge::SUCCESS;
  84. }
  85. Status VariableMemoryAssigner::AssignMemory2HasRefAttrNode() {
  86. Status result = ge::VarMemAssignUtil::AssignMemory2HasRefAttrNode(compute_graph_);
  87. if (result != ge::SUCCESS) {
  88. return result;
  89. }
  90. return ge::SUCCESS;
  91. }
  92. Status GraphMemoryAssigner::AssignMemory() {
  93. ge::HybridMemAssignerPtr mem_assigner(new(std::nothrow) HybridMemAssigner(compute_graph_));
  94. if (mem_assigner->Assign() != ge::SUCCESS) {
  95. GELOGE(ge::FAILED, "Memory assigner failed");
  96. return ge::FAILED;
  97. }
  98. MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset());
  99. memory_offset_.emplace(RT_MEMORY_HBM, memory_offset);
  100. if (mem_assigner->GetP2PMemOffset() >= 0) {
  101. MemoryOffset p2p_memory_offset(RT_MEMORY_P2P_DDR, mem_assigner->GetP2PMemOffset());
  102. memory_offset_.emplace(RT_MEMORY_P2P_DDR, p2p_memory_offset);
  103. }
  104. auto session_id = compute_graph_->GetSessionID();
  105. int64_t var_size_before_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM);
  106. auto variable_assigner =
  107. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  108. if (variable_assigner == nullptr) {
  109. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  110. return ge::FAILED;
  111. }
  112. if (variable_assigner->Assign() != ge::SUCCESS) {
  113. return ge::FAILED;
  114. }
  115. int64_t var_size_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM) - var_size_before_assign;
  116. GELOGD("GraphMemoryAssigner::AssignMemory variable size = %ld", var_size_assign);
  117. mem_assigner_ = std::move(mem_assigner);
  118. return ge::SUCCESS;
  119. }
  120. ge::Status GraphMemoryAssigner::AssignVarAttr2Nodes() {
  121. auto variable_assigner =
  122. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  123. if (variable_assigner == nullptr) {
  124. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  125. return ge::FAILED;
  126. }
  127. if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) {
  128. return ge::FAILED;
  129. }
  130. return ge::SUCCESS;
  131. }
  132. ge::Status GraphMemoryAssigner::AssignMemory2HasRefAttrNode() {
  133. auto variable_assigner =
  134. std::unique_ptr<ge::VariableMemoryAssigner>(new(std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
  135. if (variable_assigner == nullptr) {
  136. GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
  137. return ge::FAILED;
  138. }
  139. if (variable_assigner->AssignMemory2HasRefAttrNode() != ge::SUCCESS) {
  140. return ge::FAILED;
  141. }
  142. return ge::SUCCESS;
  143. }
  144. ge::Status CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &output_desc,
  145. int64_t dim_index, int64_t &output_mem_size,
  146. int64_t &batch_dim_num, int64_t &out_size) {
  147. graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size);
  148. if (graph_status != GRAPH_SUCCESS) {
  149. GELOGE(FAILED, "Opdesc GetSize failed!");
  150. return FAILED;
  151. }
  152. GeShape output_shape = output_desc->GetShape();
  153. std::vector<int64_t> output_dims = output_shape.GetDims();
  154. if (dim_index >= static_cast<int64_t>(output_dims.size())) {
  155. std::string error = "Invaild value" + FmtToStr(dim_index) +
  156. " of attr _reuse_input_on_dim_index, which is out of data range [0,"
  157. + std::to_string(output_dims.size()) + ")";
  158. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  159. return FAILED;
  160. }
  161. for (int64_t index = 0; index < dim_index; index++) {
  162. FMK_INT64_MULCHECK(batch_dim_num, output_dims[index]);
  163. batch_dim_num *= output_dims[index];
  164. output_dims[index] = 1;
  165. }
  166. output_shape = GeShape(output_dims);
  167. Format out_format = output_desc->GetFormat();
  168. DataType data_type = output_desc->GetDataType();
  169. graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size);
  170. if (graph_status != GRAPH_SUCCESS) {
  171. GELOGE(graph_status, "Opdesc CalcTensorMemSize failed!");
  172. return FAILED;
  173. }
  174. if (output_mem_size < 0) {
  175. std::string error = "After calculating tensor memory size, output_mem_size" + FmtToStr(output_mem_size) +
  176. " is out of data range [0," + std::to_string(INT64_MAX) + "]";
  177. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  178. return FAILED;
  179. }
  180. return SUCCESS;
  181. }
  182. Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, map<int64_t, size_t> &mem_type_to_offset) {
  183. if (memory_offset_.empty()) {
  184. GELOGE(FAILED, "memory_offset_ is empty.");
  185. return ge::FAILED;
  186. }
  187. GE_CHK_STATUS_RET(ReAssignContinuousMemory(is_loop_graph), "ReAssignContinuousMemory Failed!");
  188. GE_CHK_STATUS_RET(ReAssignAtomicMemory(is_loop_graph), "ReAssignAtomicMemory Failed!");
  189. size_t total_mem_offset = 0;
  190. for (auto pair : memory_offset_) {
  191. mem_type_to_offset[pair.first] = pair.second.mem_offset_;
  192. total_mem_offset += pair.second.mem_offset_;
  193. }
  194. auto session_id = compute_graph_->GetSessionID();
  195. if (total_mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) {
  196. GELOGE(ge::FAILED, "Current memoffset %zu is greater than memory manager malloc max size %zu", total_mem_offset,
  197. VarManager::Instance(session_id)->GetGraphMemoryMaxSize());
  198. for (auto iter : mem_type_to_offset) {
  199. ErrorManager::GetInstance().ATCReportErrMessage("E19022", {"memType", "size", "item", "maxsize"},
  200. {std::to_string(iter.first), std::to_string(iter.second), "featuremap",
  201. std::to_string(VarManager::Instance(session_id)->GetGraphMemoryMaxSize())});
  202. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  203. iter.second, iter.first);
  204. }
  205. return ge::FAILED;
  206. }
  207. return SUCCESS;
  208. }
  209. Status GraphMemoryAssigner::AssignZeroCopyMemory(map<int64_t, size_t> &mem_offset, size_t &zero_mem_copy_size) {
  210. BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger());
  211. GE_IF_BOOL_EXEC(priority_assigner == nullptr, GELOGE(FAILED, "Get priority_assigner failed."); return ge::FAILED;);
  212. size_t mem_offset_tmp = mem_offset[RT_MEMORY_HBM];
  213. // set offset for zero copy block
  214. for (auto &memory_block : priority_assigner->GetMemoryBlocks()) {
  215. if (memory_block == nullptr || memory_block->deleted_block_ || !memory_block->is_zero_copy_) {
  216. continue;
  217. }
  218. memory_block->Resize();
  219. memory_block->SetHeadOffset(mem_offset[RT_MEMORY_HBM]);
  220. mem_offset[RT_MEMORY_HBM] += memory_block->Size();
  221. memory_block->SetTailOffset(mem_offset[RT_MEMORY_HBM] - 1);
  222. }
  223. // set offset for zero copy nodes
  224. priority_assigner->SetOpMemOffset(true);
  225. zero_mem_copy_size = mem_offset[RT_MEMORY_HBM] - mem_offset_tmp;
  226. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  227. if (iter == memory_offset_.end()) {
  228. std::string error = "Memory offset does not have memory type[HBM]";
  229. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  230. return FAILED;
  231. }
  232. iter->second.mem_offset_ = mem_offset[RT_MEMORY_HBM];
  233. GELOGD("max_mem_offset:%zu, mem_offset:%zu, zero_mem_copy_size:%zu.", mem_offset[RT_MEMORY_HBM], mem_offset_tmp,
  234. zero_mem_copy_size);
  235. return SUCCESS;
  236. }
  237. uint32_t GetContinuousMemoryType(const OpDescPtr &op_desc) {
  238. if (op_desc == nullptr) {
  239. return 0;
  240. };
  241. bool is_continuous = false;
  242. uint32_t continuous_type = 0;
  243. // If GetBool fail, is_continuous is false.
  244. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT, is_continuous);
  245. if (is_continuous) {
  246. continuous_type |= kTypeInput;
  247. } else {
  248. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, is_continuous);
  249. if (is_continuous) {
  250. bool attr_reuse = false;
  251. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  252. if (attr_reuse) {
  253. continuous_type |= kTypeInputNoPadding;
  254. }
  255. }
  256. }
  257. is_continuous = false;
  258. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_continuous);
  259. if (is_continuous) {
  260. continuous_type |= kTypeOutput;
  261. } else {
  262. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_OUTPUT, is_continuous);
  263. if (is_continuous) {
  264. bool attr_reuse = false;
  265. (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
  266. if (attr_reuse) {
  267. continuous_type |= kTypeOutputNoPadding;
  268. }
  269. }
  270. }
  271. if (continuous_type != 0) {
  272. GELOGI("Current node %s continuous type %d.", op_desc->GetName().c_str(), continuous_type);
  273. }
  274. return continuous_type;
  275. }
  276. Status GetMemorySize(const OpDescPtr &op_desc, const ge::ConstGeTensorDescPtr &output_desc, uint32_t continuous_type,
  277. int64_t &tensor_size, int64_t &nopadding_size) {
  278. if ((op_desc == nullptr) || (output_desc == nullptr)) {
  279. GELOGE(FAILED, "Input para is nullptr.");
  280. return FAILED;
  281. }
  282. tensor_size = 0;
  283. nopadding_size = 0;
  284. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  285. if (is_nopadding) {
  286. int64_t attr_dim_index;
  287. bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
  288. if (!get_attr_dim_flag) {
  289. GELOGE(FAILED, "Get attr _reuse_input_on_dim_index failed.");
  290. return FAILED;
  291. }
  292. // Calculate tensor real size of each piece of data and out size of complete data
  293. int64_t batch_dim_num = 1;
  294. if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, nopadding_size, batch_dim_num, tensor_size) !=
  295. SUCCESS) {
  296. GELOGE(FAILED, "CalculateTensorRealSizeAndOutSize failed for node %s.", op_desc->GetName().c_str());
  297. return FAILED;
  298. }
  299. } else {
  300. if (ge::TensorUtils::GetSize(*output_desc, tensor_size) != ge::SUCCESS) {
  301. GELOGE(FAILED, "GetSize failed.");
  302. return FAILED;
  303. }
  304. }
  305. if ((tensor_size < 0) || (nopadding_size < 0)) {
  306. GELOGE(FAILED, "GetMemorySize for node %s failed.", op_desc->GetName().c_str());
  307. return FAILED;
  308. }
  309. return SUCCESS;
  310. }
  311. void AlignMemOffset(int64_t &mem_align_size) {
  312. if (mem_align_size <= 0) {
  313. return;
  314. }
  315. mem_align_size = (mem_align_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
  316. }
  317. bool IsContinuousInputConflict(const ge::NodePtr &node, const OpDescPtr &peer_op_desc) {
  318. bool is_peer_output_continuous = false;
  319. // If GetBool fail, is_peer_output_continuous is false.
  320. (void) ge::AttrUtils::GetBool(peer_op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_peer_output_continuous);
  321. // Get peer node output size, if size == 1(peer node has only one output), continuous input of the node and
  322. // continuous output of the previous node is the same, we can support it. If size != 1, there may be
  323. // conflict between the two, we can not support it.
  324. auto peer_output_size = peer_op_desc->GetOutputsSize();
  325. GE_IF_BOOL_EXEC(is_peer_output_continuous && (peer_output_size != 1),
  326. std::string error = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  327. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  328. " requires continuous output. There may be conflict between the two." +
  329. "This node is not supported now.";
  330. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  331. return true;);
  332. bool is_peer_reference = false;
  333. // If GetBool fail, is_peer_reference is false.
  334. (void) AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference);
  335. GE_IF_BOOL_EXEC(is_peer_reference,
  336. std::string warning = "Current op" + FmtToStr(node->GetOpDesc()->GetName()) +
  337. " requires continuous input, while the previous op" + FmtToStr(peer_op_desc->GetName()) +
  338. " is ref. There may be conflict between the two.";
  339. GELOGW("%s", warning.c_str());
  340. return false;);
  341. return false;
  342. }
  343. Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
  344. Status ret;
  345. // Stored nodes which need assign continuous input memory in `reverse topo order`
  346. std::vector<NodePtr> nodes_stack;
  347. std::map<NodePtr, uint32_t> node_2_continuous_type;
  348. // Traverse nodes
  349. for (auto &node : compute_graph_->GetAllNodes()) {
  350. GE_CHECK_NOTNULL(node);
  351. uint32_t continuous_type;
  352. auto iter = node_2_continuous_type.find(node);
  353. if (iter == node_2_continuous_type.end()) {
  354. continuous_type = GetContinuousMemoryType(node->GetOpDesc());
  355. node_2_continuous_type.emplace(node, continuous_type);
  356. } else {
  357. continuous_type = iter->second;
  358. }
  359. // Assign continuous input memory
  360. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  361. if (continuous_input) {
  362. if (AssignContinuousInputMemoryWithAtomicProcessDirectly(node, node_2_continuous_type)) {
  363. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, continuous_type),
  364. "Assign node %s continuous input memory failed.", node->GetName().c_str())
  365. } else {
  366. nodes_stack.push_back(node);
  367. }
  368. }
  369. // Assign continuous output memory
  370. int64_t memory_type = RT_MEMORY_HBM;
  371. bool continuous_output = ((continuous_type & kTypeOutput) != 0) || ((continuous_type & kTypeOutputNoPadding) != 0);
  372. if (continuous_output) {
  373. GE_CHK_STATUS_RET(GetNodeMemoryType(node, memory_type, "output"), "Get node memory type failed.");
  374. ret = AssignContinuousOutputMemory(node, memory_type, continuous_type);
  375. if (ret != ge::SUCCESS) {
  376. GELOGE(ret, "Assign continuous output memory failed!");
  377. return ret;
  378. }
  379. }
  380. }
  381. // Assign continuous input memory in `reverse topo order` which stored before
  382. while (!nodes_stack.empty()){
  383. auto node = nodes_stack.back();
  384. nodes_stack.pop_back();
  385. auto iter = node_2_continuous_type.find(node);
  386. if (iter == node_2_continuous_type.end()) {
  387. GELOGE(FAILED, "node %s has no continuous type!", node->GetName().c_str());
  388. return FAILED;
  389. }
  390. GE_CHK_STATUS_RET(AssignContinuousInputMemoryWithAtomicProcess(node, iter->second),
  391. "Assign node %s continuous input memory failed.", node->GetName().c_str())
  392. }
  393. for (auto pair : memory_offset_) {
  394. GELOGD("After reassign continuous memory, memory type = %ld, memoffset = %zu.", pair.first,
  395. pair.second.mem_offset_);
  396. }
  397. return ge::SUCCESS;
  398. }
  399. Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start,
  400. int64_t &continuous_mem_size, int64_t memory_type, uint32_t continuous_type) {
  401. GELOGI("Current node %s needs continuous input.", node->GetName().c_str());
  402. auto iter = memory_offset_.find(memory_type);
  403. if (iter == memory_offset_.end()) {
  404. std::string error = "Memory offset does not have memory type" + FmtToStr(memory_type);
  405. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  406. return FAILED;
  407. }
  408. // The head and tail of hcom continuous input should be added 512
  409. iter->second.mem_offset_ += MEM_ALIGN_SIZE;
  410. continuous_mem_start = iter->second.mem_offset_;
  411. int64_t mem_offset = iter->second.mem_offset_;
  412. int64_t extra_memory_size = 0;
  413. bool is_continuous_input_allocated = false;
  414. auto op_desc = node->GetOpDesc();
  415. GE_CHECK_NOTNULL(op_desc);
  416. vector<int64_t> output_list_this = op_desc->GetOutputOffset();
  417. if (output_list_this.empty()) {
  418. std::string error = "node:" + FmtToStr(op_desc->GetName()) + "has no output offset";
  419. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  420. return FAILED;
  421. }
  422. (void) ge::AttrUtils::GetBool(op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, is_continuous_input_allocated);
  423. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  424. GE_IF_BOOL_EXEC(in_data_anchor == nullptr, continue);
  425. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  426. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, continue);
  427. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  428. GE_IF_BOOL_EXEC(peer_op_desc == nullptr, continue);
  429. GE_IF_BOOL_EXEC(IsContinuousInputConflict(node, peer_op_desc), return PARAM_INVALID;);
  430. int64_t tensor_desc_size = 0;
  431. int64_t nopadding_size = 0;
  432. int64_t real_size = 0;
  433. std::vector<int64_t> offsets_of_fusion = {};
  434. bool lx_fusion = AttrUtils::GetListInt(peer_op_desc, ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, offsets_of_fusion);
  435. lx_fusion = lx_fusion && !offsets_of_fusion.empty();
  436. if (lx_fusion) {
  437. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(offsets_of_fusion.size())) {
  438. std::string error = "fusion: peer node" + FmtToStr(peer_op_desc->GetName()) +
  439. " index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
  440. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  441. return FAILED;
  442. }
  443. nopadding_size = offsets_of_fusion[peer_out_data_anchor->GetIdx()];
  444. tensor_desc_size = nopadding_size;
  445. } else {
  446. if (GetMemorySize(node->GetOpDesc(), peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx()),
  447. continuous_type, tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  448. return FAILED;
  449. }
  450. }
  451. bool is_nopadding = ((continuous_type & kTypeInputNoPadding) != 0) || lx_fusion;
  452. vector<int64_t> output_list = peer_op_desc->GetOutputOffset();
  453. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_list.size())) {
  454. std::string error = "index" + FmtToStr(peer_out_data_anchor->GetIdx()) + " is out of range.";
  455. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  456. return FAILED;
  457. }
  458. // when continuous input has been allocated first input is beginning offset
  459. bool is_allocated_first_input = is_continuous_input_allocated && (in_data_anchor->GetIdx() == 0);
  460. if (is_allocated_first_input) {
  461. std::map<int32_t, int32_t> out2ins;
  462. GE_CHK_STATUS_RET(GetAllRef(node, out2ins), "Node: %s get all ref failed", node->GetName().c_str());
  463. // output is beginning offset, set offset for input; only support this case now
  464. if (out2ins.size() == 1 && out2ins.begin()->second == 0) {
  465. output_list.at(peer_out_data_anchor->GetIdx()) = output_list_this.at(out2ins.begin()->first);
  466. peer_op_desc->SetOutputOffset(output_list);
  467. } else {
  468. GELOGW("Node %s out %d ref in %d with total ref numbers %zu", node->GetName().c_str(), out2ins.begin()->first,
  469. out2ins.begin()->second, out2ins.size());
  470. }
  471. // first input is beginning offset
  472. mem_offset = output_list.at(peer_out_data_anchor->GetIdx());
  473. continuous_mem_start = output_list.at(peer_out_data_anchor->GetIdx());
  474. } else {
  475. // set offset for input
  476. output_list.at(peer_out_data_anchor->GetIdx()) = mem_offset;
  477. peer_op_desc->SetOutputOffset(output_list);
  478. }
  479. int64_t align_size = tensor_desc_size;
  480. if (is_nopadding) {
  481. mem_offset += nopadding_size;
  482. extra_memory_size += (tensor_desc_size - nopadding_size);
  483. real_size = nopadding_size;
  484. } else {
  485. ge::AlignMemOffset(align_size);
  486. mem_offset += align_size;
  487. // The head and tail of hcom continuous input should be added 512
  488. extra_memory_size = MEM_ALIGN_SIZE;
  489. real_size = tensor_desc_size;
  490. }
  491. GELOGI("[IMAS]Continuous input : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld] "
  492. "size[%zu] realsize[%ld] nopadding[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
  493. peer_op_desc->GetName().c_str(), node->GetType().c_str(), peer_out_data_anchor->GetIdx(),
  494. output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(), memory_type,
  495. is_continuous_input_allocated ? 0UL : align_size, real_size, is_nopadding);
  496. }
  497. mem_offset += extra_memory_size;
  498. ge::AlignMemOffset(mem_offset);
  499. continuous_mem_size = mem_offset - continuous_mem_start;
  500. if (is_continuous_input_allocated) {
  501. // not allocate memory here, so no need add 512 in header
  502. iter->second.mem_offset_ -= MEM_ALIGN_SIZE;
  503. } else {
  504. iter->second.mem_offset_ = mem_offset;
  505. }
  506. return SUCCESS;
  507. }
  508. Status GetFirstInputPeerOutOutputOffset(const ge::NodePtr &node, int64_t &mem_offset) {
  509. auto in_data_anchor_list = node->GetAllInDataAnchors();
  510. if (in_data_anchor_list.empty()) {
  511. GELOGE(FAILED, "Node %s's in data anchor is empty.", node->GetName().c_str());
  512. return FAILED;
  513. }
  514. auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor();
  515. GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, GELOGE(ge::FAILED, "peer_out_data_anchor is null.");
  516. return ge::FAILED);
  517. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  518. GE_IF_BOOL_EXEC(peer_op_desc == nullptr, GELOGE(ge::FAILED, "peer_op_desc is null."); return ge::FAILED);
  519. vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset();
  520. if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) {
  521. GELOGE(FAILED, "Index : %d is out of range.", peer_out_data_anchor->GetIdx());
  522. return FAILED;
  523. }
  524. mem_offset = in_node_output_offsets.at(peer_out_data_anchor->GetIdx());
  525. return SUCCESS;
  526. }
  527. Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node, int64_t memory_type,
  528. uint32_t continuous_type) {
  529. GELOGI("Current node %s needs continuous output.", node->GetName().c_str());
  530. auto out_op_desc = node->GetOpDesc();
  531. GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
  532. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  533. if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) {
  534. GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
  535. out_op_desc->GetOutputsSize(), output_list.size());
  536. return ge::FAILED;
  537. }
  538. int64_t mem_offset = 0;
  539. bool is_nopadding = ((continuous_type & kTypeOutputNoPadding) != 0);
  540. if (is_nopadding) {
  541. // out tensor memory must be reused input tensor memory
  542. if (GetFirstInputPeerOutOutputOffset(node, mem_offset) != SUCCESS) {
  543. return ge::FAILED;
  544. }
  545. } else {
  546. // Get the reference type of the node, default is false
  547. bool is_ref = false;
  548. // If GetBool fail, is_ref is false.
  549. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  550. // If the output is ref type and refers to the ref of an input, the name of the output
  551. // and the input are the same. Ge encounters ref type, finds matching relationship according
  552. // to the names of input and output, and allocates the same memory address, eg: HCOMBroadcast
  553. if (is_ref) {
  554. GELOGI("Current node %s no needs assign continuous output because reference input by name.",
  555. node->GetName().c_str());
  556. return SUCCESS;
  557. }
  558. mem_offset = output_list[0];
  559. }
  560. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  561. output_list[out_data_anchor->GetIdx()] = mem_offset;
  562. int64_t tensor_desc_size = 0;
  563. int64_t nopadding_size = 0;
  564. if (GetMemorySize(out_op_desc, out_op_desc->GetOutputDescPtr(out_data_anchor->GetIdx()), continuous_type,
  565. tensor_desc_size, nopadding_size) != ge::SUCCESS) {
  566. return FAILED;
  567. }
  568. if (is_nopadding) {
  569. mem_offset += nopadding_size;
  570. } else {
  571. mem_offset += tensor_desc_size;
  572. ge::AlignMemOffset(mem_offset);
  573. }
  574. GELOGI("[IMAS]Continuous output : Set %s name[%s] optype[%s] output[%d] offset to [%zu] stream_id[%ld] memtype[%ld]"
  575. " size[%zu] realsize[%ld] nopadding[%d].", node->GetOwnerComputeGraph()->GetName().c_str(),
  576. out_op_desc->GetName().c_str(), node->GetType().c_str(), out_data_anchor->GetIdx(),
  577. output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId(), memory_type, 0UL,
  578. is_nopadding ? nopadding_size : tensor_desc_size, is_nopadding);
  579. }
  580. out_op_desc->SetOutputOffset(output_list);
  581. return ge::SUCCESS;
  582. }
  583. Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
  584. // key:dynamic batch, batch name
  585. map<string, map<NodePtr, vector<NodePtr>>> normal_atomic_and_clean_nodes_map;
  586. map<string, vector<NodePtr>> connecting_output_atomic_nodes;
  587. Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes);
  588. if (status != SUCCESS) {
  589. GELOGE(status, "Failed to filter atomic nodes for memory assignment.");
  590. return status;
  591. }
  592. auto mem_iter = memory_offset_.find(RT_MEMORY_HBM);
  593. if (mem_iter == memory_offset_.end()) {
  594. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  595. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  596. return FAILED;
  597. }
  598. int64_t batch_atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  599. int64_t batch_max_mem_offset = batch_atomic_mem_start;
  600. for (auto &iter_batch : normal_atomic_and_clean_nodes_map) {
  601. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  602. for (auto &iter : iter_batch.second) {
  603. int64_t atomic_mem_start = static_cast<int64_t>(mem_iter->second.mem_offset_);
  604. GELOGD("Begin to reAssign atomic memory, atomic address memory start = %ld", atomic_mem_start);
  605. for (auto &atomic_node : iter.second) {
  606. vector<int64_t> mem_offset_end;
  607. status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end);
  608. if (status != SUCCESS) {
  609. GELOGE(status, "Assign atomic output and workspace memory failed, node name is %s.",
  610. atomic_node->GetName().c_str());
  611. return status;
  612. }
  613. }
  614. int64_t atomic_mem_size = static_cast<int64_t>(mem_iter->second.mem_offset_) - atomic_mem_start;
  615. if (atomic_mem_size != 0) {
  616. GE_CHK_STATUS_RET(SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size}, RT_MEMORY_HBM),
  617. "Failed to set attr for atomic addr clean node %s.", iter.first->GetName().c_str());
  618. }
  619. }
  620. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  621. }
  622. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  623. batch_atomic_mem_start = batch_max_mem_offset;
  624. for (auto &iter_batch : connecting_output_atomic_nodes) {
  625. mem_iter->second.mem_offset_ = batch_atomic_mem_start;
  626. if (AssignConnectNetOutputAtomicMemory(iter_batch.second) != SUCCESS) {
  627. GELOGE(FAILED, "Failed to assign memory of nodes that connect to netoutput.");
  628. return FAILED;
  629. }
  630. batch_max_mem_offset = std::max(batch_max_mem_offset, static_cast<int64_t>(mem_iter->second.mem_offset_));
  631. }
  632. mem_iter->second.mem_offset_ = static_cast<size_t>(batch_max_mem_offset);
  633. return SUCCESS;
  634. }
  635. Status GraphMemoryAssigner::FilterAtomicNodesForMemoryAssign(
  636. map<string, map<NodePtr, vector<NodePtr>>> &normal_atomic_nodes_map,
  637. map<string, vector<NodePtr>> &connecting_output_atomic_nodes) {
  638. GE_CHECK_NOTNULL(compute_graph_);
  639. for (const auto &node : compute_graph_->GetAllNodes()) {
  640. if (node->GetType() == ATOMICADDRCLEAN) {
  641. map<string, vector<NodePtr>> tmp_normal_atomic_nodes;
  642. const auto &out_control_anchor = node->GetOutControlAnchor();
  643. GE_CHECK_NOTNULL(out_control_anchor);
  644. for (const auto &peer_in_control_anchor : out_control_anchor->GetPeerInControlAnchors()) {
  645. if (peer_in_control_anchor != nullptr) {
  646. auto peer_in_node = peer_in_control_anchor->GetOwnerNode();
  647. auto peer_in_node_desc = peer_in_node->GetOpDesc();
  648. if (peer_in_node_desc != nullptr) {
  649. bool is_atomic_node = false;
  650. // If GetBool fail, is_atomic_node is false.
  651. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic_node);
  652. if (is_atomic_node) {
  653. bool is_reference = false;
  654. // If GetBool fail, is_reference is false.
  655. (void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference);
  656. if (is_reference) {
  657. std::string error = "Op" + FmtToStr(peer_in_node_desc->GetName()) +
  658. " cannot have both atomic and is_reference attribute.";
  659. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  660. return ge::PARAM_INVALID;
  661. }
  662. std::string batch_label;
  663. (void)ge::AttrUtils::GetStr(peer_in_node_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  664. vector<int> is_connecting_output;
  665. // If GetBool fail, attr is_connecting_output is an empty vector.
  666. (void) ge::AttrUtils::GetListInt(peer_in_node_desc, ATTR_NAME_NODE_CONNECT_OUTPUT, is_connecting_output);
  667. if (is_connecting_output.empty()) {
  668. tmp_normal_atomic_nodes[batch_label].emplace_back(peer_in_node);
  669. continue;
  670. }
  671. connecting_output_atomic_nodes[batch_label].emplace_back(peer_in_node);
  672. tmp_normal_atomic_nodes[batch_label].clear();
  673. break;
  674. }
  675. }
  676. }
  677. }
  678. for (auto &it_atomic_node : tmp_normal_atomic_nodes) {
  679. if (!it_atomic_node.second.empty()) {
  680. normal_atomic_nodes_map[it_atomic_node.first][node] = it_atomic_node.second;
  681. }
  682. }
  683. }
  684. }
  685. return SUCCESS;
  686. }
  687. Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodePtr &node,
  688. vector<int64_t> &mem_offset_end) {
  689. auto node_op_desc = node->GetOpDesc();
  690. // Assign atomic node output memory
  691. Status ret = AssignAtomicOutputMemory(node, mem_offset_end);
  692. if (ret != SUCCESS) {
  693. GELOGE(ret, "Failed to assign atomic output memory, node is %s.", node_op_desc->GetName().c_str());
  694. return ret;
  695. }
  696. // Check and assign atomic node workspace memory
  697. map<string, map<int64_t, int64_t>> atomic_workspace_info;
  698. atomic_workspace_info = node_op_desc->TryGetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_INFO, atomic_workspace_info);
  699. if (!atomic_workspace_info.empty()) {
  700. bool is_fusion_node = false;
  701. // If GetBool fail, is_fusion_node is false.
  702. (void) ge::AttrUtils::GetBool(node_op_desc, ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
  703. if (is_fusion_node) {
  704. // Assign fusion atomic node workspace memory
  705. ret = AssignFusionAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  706. } else {
  707. // Assign single ordinary atomic node workspace memory, not include fusion node
  708. ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
  709. }
  710. if (ret != SUCCESS) {
  711. GELOGE(ret, "Assign atomic workspace memory failed, node is %s.", node_op_desc->GetName().c_str());
  712. return ret;
  713. }
  714. } else {
  715. GELOGW("Current atomic node %s does not have attr ATOMIC_WORKSPACE_INFO.", node->GetName().c_str());
  716. }
  717. return SUCCESS;
  718. }
  719. Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) {
  720. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  721. if (iter == memory_offset_.end()) {
  722. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  723. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  724. return FAILED;
  725. }
  726. for (auto &node : connect_netoutput_nodes) {
  727. GE_CHECK_NOTNULL(node);
  728. if (node->GetOpDesc() == nullptr) {
  729. GELOGW("Current node %s op desc is nullptr, memory assignment is skipped.", node->GetName().c_str());
  730. continue;
  731. }
  732. // Atomic memory start addr
  733. int64_t original_atomic_mem_start = static_cast<int64_t>(iter->second.mem_offset_);
  734. GELOGD("Start to assign memory of atomic node, node name: %s, node type: %s, mem_offset: %ld.",
  735. node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start);
  736. vector<int64_t> mem_offset_end;
  737. if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) {
  738. GELOGE(FAILED, "Assign atomic output and workspace memory failed, node is %s.", node->GetName().c_str());
  739. return FAILED;
  740. }
  741. // All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately.
  742. if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end, RT_MEMORY_HBM) != SUCCESS) {
  743. GELOGE(FAILED, "Failed to set atomic attr separately.");
  744. return FAILED;
  745. }
  746. }
  747. return SUCCESS;
  748. }
  749. Status GraphMemoryAssigner::AssignReferenceMemory() {
  750. for (auto &node : compute_graph_->GetDirectNode()) {
  751. // Get the reference type of the node, default is false
  752. bool is_ref = false;
  753. // If GetBool fail, is_ref is false.
  754. (void) ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
  755. if (!is_ref) {
  756. continue;
  757. }
  758. GELOGI("Current node %s needs to support the reference relationship between output and input.",
  759. node->GetName().c_str());
  760. auto out_op_desc = node->GetOpDesc();
  761. GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
  762. vector<int64_t> output_list = out_op_desc->GetOutputOffset();
  763. if (out_op_desc->GetOutputsSize() > output_list.size()) {
  764. GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
  765. out_op_desc->GetOutputsSize(), output_list.size());
  766. return ge::FAILED;
  767. }
  768. map<string, int> input_name_index;
  769. for (const auto &input_name : out_op_desc->GetAllInputNames()) {
  770. int index = out_op_desc->GetInputIndexByName(input_name);
  771. input_name_index.emplace(input_name, index);
  772. }
  773. for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  774. string out_data_anchor_name = out_op_desc->GetOutputNameByIndex(out_data_anchor->GetIdx());
  775. auto iter = input_name_index.find(out_data_anchor_name);
  776. if (iter != input_name_index.end()) {
  777. int index = iter->second;
  778. GELOGI("Reference memory: input anchor index = %d, input anchor name = %s, output anchor name = %s.", index,
  779. iter->first.c_str(), out_data_anchor_name.c_str());
  780. GE_CHECK_NOTNULL(node->GetInDataAnchor(index));
  781. auto peer_out_anchor = node->GetInDataAnchor(index)->GetPeerOutAnchor();
  782. GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
  783. int peer_out_anchor_index = peer_out_anchor->GetIdx();
  784. auto peer_out_node = peer_out_anchor->GetOwnerNode();
  785. auto peer_out_op_desc = peer_out_node->GetOpDesc();
  786. GE_CHECK_NOTNULL(peer_out_op_desc);
  787. output_list[out_data_anchor->GetIdx()] = peer_out_op_desc->GetOutputOffset()[peer_out_anchor_index];
  788. GELOGI("Reference output : Set %s name[%s] output[%d] offset to [%ld] stream_id[%ld]",
  789. node->GetOwnerComputeGraph()->GetName().c_str(), peer_out_op_desc->GetName().c_str(),
  790. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], peer_out_op_desc->GetStreamId());
  791. } else {
  792. GELOGI("Reference output : origin %s name[%s] output[%d] offset is [%ld] stream_id[%ld]",
  793. node->GetOwnerComputeGraph()->GetName().c_str(), out_op_desc->GetName().c_str(),
  794. out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId());
  795. }
  796. }
  797. out_op_desc->SetOutputOffset(output_list);
  798. }
  799. return ge::SUCCESS;
  800. }
  801. bool GraphMemoryAssigner::CheckInputIsSupportAtomic(const ge::NodePtr &node) {
  802. for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
  803. auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
  804. if (peer_out_data_anchor == nullptr) {
  805. continue;
  806. }
  807. auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
  808. if (peer_op_desc == nullptr) {
  809. continue;
  810. }
  811. if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) ||
  812. (peer_op_desc->GetType() == VARIABLE)) {
  813. std::string error = "Op" + FmtToStr(node->GetName()) + "'s peer out node" +
  814. FmtToStr(peer_op_desc->GetName()) + " is invalid, Constant/AippData/Variable is not supported";
  815. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  816. return false;
  817. }
  818. }
  819. return true;
  820. }
  821. Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, vector<int64_t> &mem_offset_end) {
  822. auto op_desc = node->GetOpDesc();
  823. GE_IF_BOOL_EXEC(op_desc == nullptr, GELOGE(ge::FAILED, "op_desc is null."); return ge::FAILED);
  824. mem_offset_end.clear();
  825. GELOGD("Begin to assign atomic output memory, node = %s.", op_desc->GetName().c_str());
  826. vector<int64_t> atomic_output_index;
  827. // If GetListInt fail, atomic_output_index is empty.
  828. (void) ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
  829. // Check atomic output
  830. vector<int64_t> output_list = op_desc->GetOutputOffset();
  831. if (atomic_output_index.size() > output_list.size()) {
  832. std::string error = "Op" + FmtToStr(node->GetName()) +
  833. "'s size of atomic_output_index is more than the size of output_list";
  834. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  835. return ge::FAILED;
  836. }
  837. auto output_list_size = static_cast<int64_t>(output_list.size());
  838. auto iter = memory_offset_.find(RT_MEMORY_HBM);
  839. if (iter == memory_offset_.end()) {
  840. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  841. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  842. return FAILED;
  843. }
  844. for (auto &output_index : atomic_output_index) {
  845. if (output_index >= output_list_size) {
  846. std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
  847. " is more than the size" + FmtToStr(output_list_size) + " of output_list.";
  848. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  849. return ge::PARAM_INVALID;
  850. }
  851. // If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here
  852. bool is_assigned_mem = false;
  853. if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) {
  854. GELOGE(ge::FAILED, "Failed to get memory assignment of node %s.", node->GetName().c_str());
  855. return ge::FAILED;
  856. }
  857. // If you have already assigned an atomic address, skip it, and you don't need to reassign it.
  858. if (is_assigned_mem) {
  859. GELOGI(
  860. "Node %s atomic output : we have assigned atomic memory as the input of next node in "
  861. "ReAssignContinuousMemory function.",
  862. op_desc->GetName().c_str());
  863. continue;
  864. }
  865. auto output_desc = op_desc->GetAllOutputsDescPtr().at(output_index);
  866. int64_t size = 0;
  867. if (ge::TensorUtils::GetSize(*output_desc, size) != SUCCESS) {
  868. GELOGI("Get size failed");
  869. }
  870. output_list[output_index] = iter->second.mem_offset_;
  871. std::string batch_label;
  872. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  873. GELOGI("[IMAS]Atomic output : Set %s name[%s] optype[%s] output[%ld] offset to [%zu] stream_id[%ld] memtype[%u] "
  874. "size[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(), op_desc->GetName().c_str(),
  875. node->GetType().c_str(), output_index, iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM,
  876. size, size, batch_label.c_str());
  877. iter->second.mem_offset_ += size;
  878. AlignMemOffset(MEM_ALIGN_SIZE, RT_MEMORY_HBM);
  879. mem_offset_end.emplace_back(iter->second.mem_offset_);
  880. }
  881. op_desc->SetOutputOffset(output_list);
  882. return ge::SUCCESS;
  883. }
  884. Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index,
  885. bool &is_mem_assigned) {
  886. if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) {
  887. std::string error = "Op" + FmtToStr(node->GetName()) + "'s output index" + FmtToStr(output_index) +
  888. " is more than the size of node's AllOutDataAnchors.";
  889. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  890. return ge::PARAM_INVALID;
  891. }
  892. auto out_data_anchor = node->GetAllOutDataAnchors().at(output_index);
  893. GE_CHECK_NOTNULL(out_data_anchor);
  894. auto input_anchors = out_data_anchor->GetPeerInDataAnchors();
  895. for (auto &input_anchor : input_anchors) {
  896. auto output_node = input_anchor->GetOwnerNode();
  897. /// Get input atomic attr of peer output op, if atomic_input_index[0] = -1, indicates that the atomic address
  898. /// has been assigned
  899. vector<int64_t> atomic_input_index;
  900. (void) ge::AttrUtils::GetListInt(output_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, atomic_input_index);
  901. if (!atomic_input_index.empty() && (atomic_input_index[0] == kAllInputAddrIsAtomic)) {
  902. is_mem_assigned = true;
  903. break;
  904. }
  905. }
  906. return SUCCESS;
  907. }
  908. Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  909. map<string, map<int64_t, int64_t>> &workspace_info,
  910. vector<int64_t> &mem_offset_end) {
  911. GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str());
  912. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  913. if (mem_type_iter == memory_offset_.end()) {
  914. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  915. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  916. return FAILED;
  917. }
  918. vector<int64_t> workspace_vector = op_desc->GetWorkspace();
  919. for (auto iter = workspace_info.begin(); iter != workspace_info.end(); ++iter) {
  920. if (op_desc->GetName() != iter->first) {
  921. std::string error = "The node name" + FmtToStr(op_desc->GetName()) +
  922. " and the node name" + FmtToStr(iter->first) + " in workspace info are inconsistent.";
  923. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  924. return ge::PARAM_INVALID;
  925. }
  926. if (iter->second.empty()) {
  927. continue;
  928. }
  929. for (auto &info_iter : iter->second) {
  930. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  931. auto workspace_size = info_iter.second;
  932. if (workspace_index >= workspace_vector.size()) {
  933. std::string error = "The workspace index" + FmtToStr(workspace_index) +
  934. " is more than the size" + FmtToStr(workspace_vector.size()) + " of workspace vector.";
  935. GE_ERRORLOG_AND_ERRORMSG(ge::PARAM_INVALID, error.c_str());
  936. return ge::PARAM_INVALID;
  937. }
  938. workspace_vector[workspace_index] = mem_type_iter->second.mem_offset_;
  939. std::string batch_label;
  940. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  941. GELOGI(
  942. "[IMAS]Atomic ordinary workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  943. "memtype[%u] size[%ld] real_size[%ld] batch[%s].",
  944. compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index,
  945. mem_type_iter->second.mem_offset_, op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size,
  946. batch_label.c_str());
  947. mem_type_iter->second.mem_offset_ += workspace_size;
  948. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  949. }
  950. }
  951. op_desc->SetWorkspace(workspace_vector);
  952. return SUCCESS;
  953. }
  954. Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
  955. map<string, map<int64_t, int64_t>> &workspace_info,
  956. vector<int64_t> &mem_offset_end) {
  957. GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str());
  958. auto mem_type_iter = memory_offset_.find(RT_MEMORY_HBM);
  959. if (mem_type_iter == memory_offset_.end()) {
  960. std::string error = "Memory offset does not have memory type" + FmtToStr(RT_MEMORY_HBM);
  961. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  962. return FAILED;
  963. }
  964. map<string, map<int64_t, int64_t>> sub_node_workspace_offset;
  965. for (auto &iter : workspace_info) {
  966. if (iter.second.empty()) {
  967. continue;
  968. }
  969. map<int64_t, int64_t> index_offset;
  970. for (auto &info_iter : iter.second) {
  971. auto workspace_index = static_cast<uint64_t>(info_iter.first);
  972. auto workspace_size = info_iter.second;
  973. size_t workspace_offset = mem_type_iter->second.mem_offset_;
  974. std::string batch_label;
  975. (void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
  976. GELOGI(
  977. "[IMAS]Atomic fusion workspace : Set %s name[%s] optype[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
  978. "memtype[%u] ssize[%ld] real_size[%ld] batch[%s].", compute_graph_->GetName().c_str(),
  979. op_desc->GetName().c_str(), op_desc->GetType().c_str(), workspace_index, mem_type_iter->second.mem_offset_,
  980. op_desc->GetStreamId(), RT_MEMORY_HBM, workspace_size, workspace_size, batch_label.c_str());
  981. mem_type_iter->second.mem_offset_ += workspace_size;
  982. mem_offset_end.emplace_back(mem_type_iter->second.mem_offset_);
  983. index_offset.insert(std::make_pair(workspace_index, workspace_offset));
  984. }
  985. sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset));
  986. }
  987. if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) {
  988. GELOGE(FAILED, "Set EXT_ATTR_ATOMIC_WORKSPACE_OFFSET failed, op name:%s.", op_desc->GetName().c_str());
  989. return FAILED;
  990. }
  991. return SUCCESS;
  992. }
  993. Status GraphMemoryAssigner::CheckOffset() {
  994. std::map<std::string, std::string> anchor_to_symbol;
  995. std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
  996. if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) {
  997. GELOGE(FAILED, "Get ref-mapping for graph %s failed.", compute_graph_->GetName().c_str());
  998. return FAILED;
  999. }
  1000. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1001. GE_CHECK_NOTNULL(node->GetOpDesc());
  1002. vector<int64_t> input_list = node->GetOpDesc()->GetInputOffset();
  1003. for (auto input : input_list) {
  1004. if (input == ge::kInvalidOffset) {
  1005. std::string error = "Invalid input offset" + FmtToStr(ge::kInvalidOffset) +
  1006. + " in node" + FmtToStr(node->GetName());
  1007. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1008. return FAILED;
  1009. }
  1010. }
  1011. bool need_update_output = false;
  1012. vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
  1013. for (uint32_t i = 0; i < output_list.size(); ++i) {
  1014. if (output_list[i] == ge::kInvalidOffset) {
  1015. std::string error = "Invalid output offset" + FmtToStr(ge::kInvalidOffset) +
  1016. + " in node" + FmtToStr(node->GetName());
  1017. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1018. return FAILED;
  1019. }
  1020. if (node->GetType() == IDENTITY || node->GetType() == READVARIABLEOP) {
  1021. auto symbol_offset = GetSymbolOutputOffset(anchor_to_symbol, symbol_to_anchors, node, i);
  1022. if (symbol_offset != ge::kInvalidOffset && output_list[i] != symbol_offset) {
  1023. output_list[i] = symbol_offset;
  1024. need_update_output = true;
  1025. }
  1026. }
  1027. }
  1028. if (need_update_output) {
  1029. node->GetOpDesc()->SetOutputOffset(output_list);
  1030. }
  1031. vector<int64_t> workspace_list = node->GetOpDesc()->GetWorkspace();
  1032. for (auto workspace : workspace_list) {
  1033. if (workspace == ge::kInvalidOffset) {
  1034. std::string error = "Invalid workspace" + FmtToStr(ge::kInvalidOffset) +
  1035. + " in node" + FmtToStr(node->GetName());
  1036. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1037. GELOGE(FAILED, "Invalid workspace in node: %s workspace: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
  1038. return FAILED;
  1039. }
  1040. }
  1041. }
  1042. return SUCCESS;
  1043. }
  1044. ge::Status GraphMemoryAssigner::SetInputOffset() {
  1045. if (memory_offset_.empty()) {
  1046. GELOGE(FAILED, "memory_offset_ is empty.");
  1047. return FAILED;
  1048. }
  1049. for (auto pair : memory_offset_) {
  1050. GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu], memtype[%ld]", compute_graph_->GetName().c_str(),
  1051. pair.second.mem_offset_, pair.first);
  1052. }
  1053. for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
  1054. if (UpdateOpInputOffset(node) != ge::SUCCESS) {
  1055. GELOGE(ge::FAILED, "Update op input offset failed");
  1056. return ge::FAILED;
  1057. }
  1058. }
  1059. return ge::SUCCESS;
  1060. }
  1061. NodePtr GraphMemoryAssigner::GetKnownInputNode(const NodePtr &node) const {
  1062. if (!node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX)) {
  1063. return node;
  1064. }
  1065. if (NodeUtils::IsDynamicShape(node)) {
  1066. return node;
  1067. }
  1068. return NodeUtils::GetParentInput(node);
  1069. }
  1070. ge::Status GraphMemoryAssigner::UpdateConstArgsOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1071. uint32_t parent_index = 0;
  1072. if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) {
  1073. return SUCCESS;
  1074. }
  1075. // Subgraph Data Node, check for constant input.
  1076. std::string op_type;
  1077. const auto &in_node = NodeUtils::GetParentInput(node);
  1078. if (NodeUtils::GetConstOpType(in_node, op_type)) {
  1079. input_list = in_node->GetOpDesc()->GetOutputOffset();
  1080. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as const output.
  1081. return SUCCESS; // Constant input.
  1082. }
  1083. // Memory allocated for dynamic shape subgraph Data.
  1084. if (NodeUtils::IsDynamicShape(node)) {
  1085. return SUCCESS;
  1086. }
  1087. const auto &owner = node->GetOwnerComputeGraph();
  1088. const auto &parent_desc = owner->GetParentNode()->GetOpDesc();
  1089. const auto parent_inputs = parent_desc->GetInputOffset();
  1090. if (parent_inputs.size() <= parent_index) {
  1091. std::string error = "Get Parent input offset failed, node is " + FmtToStr(node->GetName()) +
  1092. + ", input_size is " + FmtToStr(parent_inputs.size()) + ", parent index is " +
  1093. FmtToStr(parent_index);
  1094. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1095. return FAILED;
  1096. }
  1097. input_list = {parent_inputs[parent_index]};
  1098. node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as parent input.
  1099. return SUCCESS;
  1100. }
  1101. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node, vector<int64_t> &input_list) const {
  1102. vector<int64_t> origin_input_list;
  1103. vector<int64_t> memory_type;
  1104. auto tmp_op_desc = node->GetOpDesc();
  1105. origin_input_list = tmp_op_desc->GetInputOffset();
  1106. int64_t valid_input_index = 0;
  1107. bool has_mem_type_attr = ge::AttrUtils::GetListInt(tmp_op_desc, ATTR_NAME_INPUT_MEM_TYPE_LIST, memory_type);
  1108. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1109. vector<int64_t> output_list;
  1110. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1111. if (peer_out_anchor == nullptr) {
  1112. continue;
  1113. }
  1114. // If the current node not broadcast, the OutputOffset of the previous node is used to update the input_list
  1115. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1116. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1117. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1118. output_list = last_peer_out_op_desc->GetOutputOffset();
  1119. auto out_index = static_cast<unsigned long>(peer_out_anchor->GetIdx());
  1120. if (output_list.size() > static_cast<size_t>(out_index)) {
  1121. int64_t input_offset = output_list.at(out_index);
  1122. if (has_mem_type_attr && !origin_input_list.empty()) {
  1123. auto input_size = tmp_op_desc->GetInputsSize();
  1124. auto ori_input_offset_list_size = origin_input_list.size();
  1125. auto mem_type_size = memory_type.size();
  1126. if ((input_size != mem_type_size) || (input_size != ori_input_offset_list_size)) {
  1127. std::string error = "fusion: node" + FmtToStr(tmp_op_desc->GetName()) +
  1128. + " input_size" + FmtToStr(input_size) + " diff from memory_type_size" +
  1129. FmtToStr(mem_type_size) + " from ori_input_offset_list_size" +
  1130. FmtToStr(ori_input_offset_list_size);
  1131. GE_ERRORLOG_AND_ERRORMSG(ge::FAILED, error.c_str());
  1132. return ge::FAILED;
  1133. }
  1134. // not hbm keep orignal inputoffest
  1135. // hbm inputoffset = original inputoffset + outputoffset
  1136. input_offset = (memory_type[valid_input_index] == RT_MEMORY_L1 ? origin_input_list[valid_input_index]
  1137. : origin_input_list[valid_input_index] + output_list.at(out_index));
  1138. }
  1139. const auto &in_node = GetKnownInputNode(peer_out_anchor->GetOwnerNode());
  1140. if (in_node->GetType() == CONSTANT) {
  1141. GeTensorDesc tensor_desc = tmp_op_desc->GetInputDesc(static_cast<uint32_t>(anchor->GetIdx()));
  1142. GE_CHK_STATUS(TensorUtils::GetDataOffset(tensor_desc, input_offset));
  1143. }
  1144. GELOGD("%s node[%s] input[%ld] is set from node[%s] out index[%lu] offset[%ld]",
  1145. has_mem_type_attr ? "Fusion" : "",
  1146. tmp_op_desc->GetName().c_str(),
  1147. valid_input_index,
  1148. peer_out_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
  1149. out_index,
  1150. input_offset);
  1151. input_list.emplace_back(input_offset);
  1152. valid_input_index++;
  1153. }
  1154. }
  1155. return ge::SUCCESS;
  1156. }
  1157. ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node) const {
  1158. GE_CHECK_NOTNULL(node->GetOpDesc());
  1159. vector<int64_t> input_list;
  1160. if (node->GetType() == HCOMBROADCAST || node->GetType() == HVDCALLBACKBROADCAST) {
  1161. for (const auto &anchor : node->GetAllInDataAnchors()) {
  1162. vector<int64_t> output_list;
  1163. auto peer_out_anchor = anchor->GetPeerOutAnchor();
  1164. if (peer_out_anchor == nullptr) {
  1165. continue;
  1166. }
  1167. auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
  1168. // If the current node is broadcast and the preceding node is variable, because InputOffset has been set
  1169. // in function:AssignVarAttr2Nodes, then the InputOffset of the broadcast node is taken to update the input_list.
  1170. // Otherwise, the OutputOffset of the previous node is used to update the input_list.
  1171. if (last_peer_out_node->GetType() != VARIABLE) {
  1172. auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
  1173. GE_CHECK_NOTNULL(last_peer_out_op_desc);
  1174. output_list = last_peer_out_op_desc->GetOutputOffset();
  1175. if (output_list.size() > static_cast<size_t>(peer_out_anchor->GetIdx())) {
  1176. input_list.emplace_back(output_list.at(peer_out_anchor->GetIdx()));
  1177. }
  1178. } else {
  1179. vector<int64_t> cur_node_input_list;
  1180. auto cur_node_op_desc = node->GetOpDesc();
  1181. GE_CHECK_NOTNULL(cur_node_op_desc);
  1182. cur_node_input_list = cur_node_op_desc->GetInputOffset();
  1183. if (cur_node_input_list.size() > static_cast<size_t>(anchor->GetIdx())) {
  1184. input_list.emplace_back(cur_node_input_list.at(anchor->GetIdx()));
  1185. }
  1186. }
  1187. }
  1188. } else if (node->GetType() == DATA_TYPE) {
  1189. if (UpdateConstArgsOffset(node, input_list) != SUCCESS) {
  1190. GELOGE(FAILED, "Update data: %s args offset failed.", node->GetName().c_str());
  1191. return FAILED;
  1192. }
  1193. } else {
  1194. if (UpdateOpInputOffset(node, input_list) != SUCCESS) {
  1195. GELOGE(FAILED, "Update node: %s input offset failed.", node->GetName().c_str());
  1196. return FAILED;
  1197. }
  1198. }
  1199. node->GetOpDesc()->SetInputOffset(input_list);
  1200. return SUCCESS;
  1201. }
  1202. Status GraphMemoryAssigner::SetIndependentAtomicAttr(const ge::NodePtr &node, int64_t atomic_mem_start,
  1203. const vector<int64_t> &mem_offset_end, int64_t memory_type) {
  1204. GELOGD("Start to set independent atomic attr, atomic_addr_clean memory offset start is %ld", atomic_mem_start);
  1205. // Parsing offset and size vectors
  1206. vector<int64_t> memory_offset_start;
  1207. vector<int64_t> memory_offset_size;
  1208. memory_offset_start.emplace_back(atomic_mem_start);
  1209. for (size_t i = 0; i < mem_offset_end.size(); ++i) {
  1210. memory_offset_start.emplace_back(mem_offset_end[i]);
  1211. // Number 1 means element index
  1212. auto size = memory_offset_start[i + 1] - memory_offset_start[i];
  1213. memory_offset_size.emplace_back(size);
  1214. }
  1215. memory_offset_start.pop_back();
  1216. const auto &in_control_anchor = node->GetInControlAnchor();
  1217. if (!memory_offset_size.empty() && in_control_anchor != nullptr) {
  1218. for (auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1219. if (peer_out_control_anchor == nullptr) {
  1220. continue;
  1221. }
  1222. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1223. auto peer_out_node_desc = peer_out_node->GetOpDesc();
  1224. if (peer_out_node_desc == nullptr) {
  1225. continue;
  1226. }
  1227. GELOGD("Current node memory_offset vector size is %zu, node name %s, node type is %s.", memory_offset_size.size(),
  1228. peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str());
  1229. if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) {
  1230. if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size, memory_type) != SUCCESS) {
  1231. GELOGE(FAILED, "Set atomic clean attr failed.");
  1232. return FAILED;
  1233. }
  1234. }
  1235. }
  1236. }
  1237. return SUCCESS;
  1238. }
  1239. ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const vector<int64_t> &atomic_mem_start,
  1240. const vector<int64_t> &atomic_mem_size, int64_t memory_type) {
  1241. auto node_op_desc = node->GetOpDesc();
  1242. if (node_op_desc != nullptr) {
  1243. GELOGD("Node %s, set atomic clean attr start.", node->GetName().c_str());
  1244. vector<int64_t> workspace_vector = node_op_desc->GetWorkspace();
  1245. vector<int64_t> workspace_byte_vector = node_op_desc->GetWorkspaceBytes();
  1246. workspace_vector.insert(workspace_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1247. workspace_byte_vector.insert(workspace_byte_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1248. node_op_desc->SetWorkspace(workspace_vector);
  1249. node_op_desc->SetWorkspaceBytes(workspace_byte_vector);
  1250. std::vector<int64_t> mem_start_vector;
  1251. // If GetListInt fail, mem_start_vector is empty.
  1252. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector);
  1253. mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
  1254. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector),
  1255. GELOGE(FAILED, "SetListInt failed.");
  1256. return FAILED);
  1257. std::vector<int64_t> mem_size_vector;
  1258. // If GetListInt fail, mem_size_vector is empty.
  1259. (void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector);
  1260. mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
  1261. GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector),
  1262. GELOGE(FAILED, "SetListInt failed.");
  1263. return FAILED);
  1264. std::stringstream ss;
  1265. for (auto iter : atomic_mem_start) {
  1266. ss << iter << " ";
  1267. }
  1268. string atomic_mem_start_str = ss.str();
  1269. ss.clear();
  1270. ss.str("");
  1271. for (auto iter : atomic_mem_size) {
  1272. ss << iter << " ";
  1273. }
  1274. string atomic_mem_size_str = ss.str();
  1275. GELOGI("[IMAS]SetAtomicCleanAttr : Set %s atomic_node name[%s] optype[%s] output[0] offset to [%s] streamid[%ld]"
  1276. " memtype[%ld] size[%s]",node->GetOwnerComputeGraph()->GetName().c_str(), node_op_desc->GetName().c_str(),
  1277. node->GetType().c_str(), atomic_mem_start_str.c_str(), node->GetOpDesc()->GetStreamId(), memory_type,
  1278. atomic_mem_size_str.c_str());
  1279. }
  1280. return SUCCESS;
  1281. }
  1282. void GraphMemoryAssigner::AlignMemOffset(const int64_t &mem_align_size, int64_t memory_type) {
  1283. if (mem_align_size <= 0) {
  1284. return;
  1285. }
  1286. auto iter = memory_offset_.find(memory_type);
  1287. if (iter == memory_offset_.end()) {
  1288. GELOGW("Memory offset don't have memory type[%ld].", memory_type);
  1289. return;
  1290. }
  1291. iter->second.mem_offset_ =
  1292. (iter->second.mem_offset_ + mem_align_size - 1) / mem_align_size * mem_align_size;
  1293. }
  1294. ge::Status GraphMemoryAssigner::GetNodeListMemoryType(const vector<NodePtr> &nodes, int32_t mem_reuse_model,
  1295. int64_t &memory_type) {
  1296. memory_type = RT_MEMORY_HBM;
  1297. // In the dynamic batch scenario, the memory attributes of nodes are the same.
  1298. for (auto &n : nodes) {
  1299. if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
  1300. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "input"), "Get node memory type failed.")
  1301. break;
  1302. }
  1303. if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
  1304. GE_CHK_STATUS_RET(GetNodeMemoryType(n, memory_type, "output"), "Get node memory type failed.");
  1305. break;
  1306. }
  1307. }
  1308. return SUCCESS;
  1309. }
  1310. ge::Status GraphMemoryAssigner::GetNodeMemoryType(const NodePtr &node, int64_t &memory_type, string input_or_output) {
  1311. memory_type = RT_MEMORY_HBM;
  1312. vector<int64_t> mem_type_list;
  1313. if (input_or_output == "input") {
  1314. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_INPUT_MEM_TYPE_LIST, mem_type_list);
  1315. }
  1316. if (input_or_output == "output") {
  1317. (void) ge::AttrUtils::GetListInt(node->GetOpDesc(), ATTR_NAME_OUTPUT_MEM_TYPE_LIST, mem_type_list);
  1318. }
  1319. if (mem_type_list.empty()) {
  1320. if (memory_offset_.find(memory_type) == memory_offset_.end()) {
  1321. std::string error = "Memory offset map does not have memory type" + FmtToStr(memory_type) +
  1322. + ", opname is " + FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1323. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1324. return FAILED;
  1325. }
  1326. return SUCCESS;
  1327. }
  1328. if (mem_type_list.size() != node->GetAllInDataAnchorsSize()) {
  1329. std::string error = "The size" + FmtToStr(mem_type_list.size()) +
  1330. " of mem type list is not equal to the size of in data anchor" +
  1331. FmtToStr(node->GetAllInDataAnchorsSize()) + ", opname is " +
  1332. FmtToStr(node->GetName()) + ", optype is " + FmtToStr(node->GetType());
  1333. GE_ERRORLOG_AND_ERRORMSG(FAILED, error.c_str());
  1334. return FAILED;
  1335. }
  1336. if (!CheckContinuousMemType(mem_type_list)) {
  1337. GELOGE(FAILED, "Check continuous memory type failed.");
  1338. return FAILED;
  1339. }
  1340. // It is continuous memory and memory type is the same, so use the first memory.
  1341. memory_type = mem_type_list[0];
  1342. return SUCCESS;
  1343. }
  1344. bool GraphMemoryAssigner::CheckContinuousMemType(vector<int64_t> mem_type_list) {
  1345. if (mem_type_list.size() == 0) {
  1346. return true;
  1347. }
  1348. int64_t mem_type_tmp = mem_type_list[0];
  1349. for (auto mem_type : mem_type_list) {
  1350. if (mem_type != mem_type_tmp) {
  1351. std::string error = "The memory is continuous, but the type of the input memory is inconsistent. They are " +
  1352. FmtToStr(mem_type_tmp) + " and " + FmtToStr(mem_type);
  1353. ErrorManager::GetInstance().ATCReportErrMessage("E10043", {"reason"}, {error});
  1354. GELOGW("The memory is continuous, but the type of the input memory is inconsistent. They are [%ld] and [%ld].",
  1355. mem_type_tmp, mem_type);
  1356. return false;
  1357. }
  1358. }
  1359. if (memory_offset_.find(mem_type_tmp) == memory_offset_.end()) {
  1360. std::string error = "Memory offset map does not have memory type" + FmtToStr(mem_type_tmp);
  1361. ErrorManager::GetInstance().ATCReportErrMessage("E10043", {"reason"}, {error});
  1362. GELOGW("Memory offset map does not have memory type[%ld].", mem_type_tmp);
  1363. return false;
  1364. }
  1365. return true;
  1366. }
  1367. void GraphMemoryAssigner::PrintMemoryOffset() {
  1368. for (auto pair : memory_offset_) {
  1369. // Assign memory of max batch nodes that have the same batch label.
  1370. GELOGD("Reassign memory for max batch virtual nodes, memory type = %ld, memory offset = %zu.",
  1371. pair.first, pair.second.mem_offset_);
  1372. }
  1373. }
  1374. ge::Status GraphMemoryAssigner::GetAllRef(const NodePtr &node, map<int32_t, int32_t> &out2ins) {
  1375. for (const auto &out_data_anchor : node->GetAllOutDataAnchors()) {
  1376. int32_t reuse_in_index = -1;
  1377. bool reuse_input_flag = GraphUtils::IsRefFromInput(out_data_anchor, reuse_in_index);
  1378. if (reuse_input_flag) {
  1379. if (node->GetInDataAnchor(reuse_in_index) != nullptr) {
  1380. out2ins.emplace(out_data_anchor->GetIdx(), reuse_in_index);
  1381. } else {
  1382. GELOGE(FAILED, "Invalid reuse_input value %d on output %d of node %s, please check attr reuse_input",
  1383. reuse_in_index, out_data_anchor->GetIdx(), node->GetName().c_str());
  1384. return FAILED;
  1385. }
  1386. }
  1387. }
  1388. return ge::SUCCESS;
  1389. }
  1390. bool GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcessDirectly(
  1391. const NodePtr &input_continuous_node, map<NodePtr, uint32_t> &node_2_continuous_type) {
  1392. for (const auto &in_node : input_continuous_node->GetInDataNodes()) {
  1393. auto iter = node_2_continuous_type.find(in_node);
  1394. // In node's topo order in the front, so function can not be exception
  1395. auto continuous_type = iter->second;
  1396. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1397. if (continuous_input) {
  1398. GELOGI("node %s 's precursor node %s need assign continuous input memory, store node firstly.",
  1399. input_continuous_node->GetName().c_str(), in_node->GetName().c_str());
  1400. return false;
  1401. }
  1402. }
  1403. for (const auto &out_node : input_continuous_node->GetOutDataNodes()) {
  1404. auto continuous_type = GetContinuousMemoryType(out_node->GetOpDesc());
  1405. node_2_continuous_type.emplace(out_node, continuous_type);
  1406. bool continuous_input = ((continuous_type & kTypeInput) != 0) || ((continuous_type & kTypeInputNoPadding) != 0);
  1407. if (continuous_input) {
  1408. GELOGI("node %s 's succeed node %s need assign continuous input memory, store node firstly.",
  1409. input_continuous_node->GetName().c_str(), out_node->GetName().c_str());
  1410. return false;
  1411. }
  1412. }
  1413. return true;
  1414. }
  1415. ge::Status GraphMemoryAssigner::AssignContinuousInputMemoryWithAtomicProcess(const NodePtr &input_continuous_node,
  1416. uint32_t continuous_type) {
  1417. int64_t mem_clean_start = 0;
  1418. int64_t mem_clean_size = 0;
  1419. int64_t memory_type = RT_MEMORY_HBM;
  1420. GE_CHK_STATUS_RET(GetNodeMemoryType(input_continuous_node, memory_type, "input"), "Get node memory type failed.");
  1421. auto ret = AssignContinuousInputMemory(input_continuous_node, mem_clean_start, mem_clean_size, memory_type, continuous_type);
  1422. if (ret != ge::SUCCESS) {
  1423. GELOGE(ret, "Assign continuous input memory failed!");
  1424. return ret;
  1425. }
  1426. // Clean up atomic address, eg, hcom node
  1427. vector<int32_t> input_indexes;
  1428. // If GetListInt fail, input_indexes is empty.
  1429. (void)ge::AttrUtils::GetListInt(input_continuous_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, input_indexes);
  1430. if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) {
  1431. // check whether there is an atomic conflict between the current node and the peer out node
  1432. if (!CheckInputIsSupportAtomic(input_continuous_node)) {
  1433. GELOGE(ge::FAILED, "There is an atomic conflict between the current node and the peer out node, not supported!");
  1434. return ge::FAILED;
  1435. }
  1436. const auto &in_control_anchor = input_continuous_node->GetInControlAnchor();
  1437. GE_CHECK_NOTNULL(in_control_anchor);
  1438. for (const auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
  1439. GE_CHECK_NOTNULL(peer_out_control_anchor);
  1440. auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
  1441. if (peer_out_node->GetType() == ATOMICADDRCLEAN) {
  1442. ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size}, memory_type);
  1443. if (ret != SUCCESS) {
  1444. GELOGE(ret, "Failed to set attr for atomic addr clean node %s.", peer_out_node->GetName().c_str());
  1445. return ret;
  1446. }
  1447. }
  1448. }
  1449. }
  1450. return ge::SUCCESS;
  1451. }
  1452. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示