You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

nn_ops.h 3.5 kB

5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_OP_NN_OPS_H_
  17. #define GE_OP_NN_OPS_H_
  18. #include "graph/operator_reg.h"
  19. #include "graph/operator.h"
  20. namespace ge {
  21. REG_OP(FractionalMaxPoolGrad)
  22. .INPUT(orig_input, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  23. .INPUT(orig_output, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  24. .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  25. .INPUT(row_pooling_sequence, TensorType({ DT_INT64 }))
  26. .INPUT(col_pooling_sequence, TensorType({ DT_INT64 }))
  27. .OUTPUT(y, TensorType({ DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64 }))
  28. .ATTR(overlapping, Bool, false)
  29. .OP_END_FACTORY_REG(FractionalMaxPoolGrad)
  30. REG_OP(FractionalAvgPool)
  31. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  32. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  33. .OUTPUT(row_pooling_sequence, TensorType({DT_INT64}))
  34. .OUTPUT(col_pooling_sequence, TensorType({DT_INT64}))
  35. .ATTR(pooling_ratio, ListFloat, {})
  36. .ATTR(pseudo_random, Bool, false)
  37. .ATTR(overlapping, Bool, false)
  38. .ATTR(deterministic, Bool, false)
  39. .ATTR(seed, Int, 0)
  40. .ATTR(seed2, Int, 0)
  41. .OP_END_FACTORY_REG(FractionalAvgPool)
  42. REG_OP(FractionalMaxPool)
  43. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  44. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  45. .OUTPUT(row_pooling_sequence, TensorType({DT_INT64}))
  46. .OUTPUT(col_pooling_sequence, TensorType({DT_INT64}))
  47. .ATTR(pooling_ratio, ListFloat, {})
  48. .ATTR(pseudo_random, Bool, false)
  49. .ATTR(overlapping, Bool, false)
  50. .ATTR(deterministic, Bool, false)
  51. .ATTR(seed, Int, 0)
  52. .ATTR(seed2, Int, 0)
  53. .OP_END_FACTORY_REG(FractionalMaxPool)
  54. REG_OP(NthElement)
  55. .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16,
  56. DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
  57. .INPUT(n, TensorType({DT_INT32}))
  58. .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16,
  59. DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
  60. .ATTR(reverse, Bool, false)
  61. .OP_END_FACTORY_REG(NthElement)
  62. REG_OP(FractionalAvgPoolGrad)
  63. .INPUT(orig_input_tensor_shape, TensorType({DT_INT64}))
  64. .INPUT(out_backprop, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  65. .INPUT(row_pooling_sequence, TensorType({DT_INT64}))
  66. .INPUT(col_pooling_sequence, TensorType({DT_INT64}))
  67. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
  68. .ATTR(overlapping, Bool, false)
  69. .OP_END_FACTORY_REG(FractionalAvgPoolGrad)
  70. REG_OP(DataFormatVecPermute)
  71. .INPUT(x, TensorType({ DT_INT32, DT_INT64 }))
  72. .OUTPUT(y, TensorType({ DT_INT32, DT_INT64 }))
  73. .ATTR(src_format, String, "NHWC")
  74. .ATTR(dst_format, String, "NCHW")
  75. .OP_END_FACTORY_REG(DataFormatVecPermute)
  76. } // namespace ge
  77. #endif // GE_OP_NN_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示