You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_async_executor.cc 23 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/hybrid_model_async_executor.h"
  17. #include "graph/load/model_manager/model_utils.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/type_utils.h"
  20. #include "graph/ge_context.h"
  21. #include "omm/csa_interact.h"
  22. namespace ge {
  23. namespace hybrid {
  24. namespace {
  25. const int kDataOutputIndex = 0;
  26. const size_t kMinimumPiplineStages = 2;
  27. const int kDefaultLoopCount = 10;
  28. }
  29. HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
  30. : model_(model), run_flag_(false), data_dumper_(nullptr) {
  31. }
  32. HybridModelAsyncExecutor::~HybridModelAsyncExecutor() {
  33. if (stream_ != nullptr) {
  34. GE_CHK_RT(rtStreamDestroy(stream_));
  35. }
  36. }
  37. void HybridModelAsyncExecutor::SetDeviceId(uint32_t device_id) {
  38. device_id_ = device_id;
  39. }
  40. void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) {
  41. model_id_ = model_id;
  42. }
  43. Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
  44. GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL,
  45. "Data queue is full, please call again later, model_id %u ", model_id_);
  46. GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index);
  47. return SUCCESS;
  48. }
  49. Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &listener) {
  50. GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr);
  51. std::lock_guard<std::mutex> lk(mu_);
  52. GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started.");
  53. run_flag_ = true;
  54. listener_ = listener;
  55. future_ = std::async(std::launch::async, [&]() -> Status {
  56. GetThreadLocalContext() = *executor_->GetContext()->ge_context;
  57. GetContext().SetSessionId(executor_->GetContext()->session_id);
  58. GetContext().SetContextId(executor_->GetContext()->context_id);
  59. return RunInternal();
  60. });
  61. GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start.");
  62. GELOGD("HybridModelExecutor::Start successfully");
  63. return SUCCESS;
  64. }
  65. Status HybridModelAsyncExecutor::Stop() {
  66. std::lock_guard<std::mutex> lk(mu_);
  67. run_flag_ = false;
  68. data_inputer_->Stop();
  69. Status ret = SUCCESS;
  70. if (future_.valid()) {
  71. ret = future_.get();
  72. }
  73. if (is_op_debug_reg_) {
  74. op_debug_register_.UnregisterDebugForStream(stream_);
  75. }
  76. if (stream_ != nullptr) {
  77. GE_CHK_RT(rtStreamDestroy(stream_));
  78. stream_ = nullptr;
  79. }
  80. return ret;
  81. }
  82. Status HybridModelAsyncExecutor::Init() {
  83. data_inputer_ = std::unique_ptr<DataInputer>(new(std::nothrow) DataInputer());
  84. GE_CHECK_NOTNULL(data_inputer_);
  85. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  86. executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
  87. GE_CHECK_NOTNULL(executor_);
  88. GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine");
  89. GE_CHK_STATUS_RET(DumpOpDebug(), "Dump op debug failed in hybrid engine");
  90. GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
  91. if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
  92. pipe_executor_ =
  93. std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
  94. GE_CHECK_NOTNULL(pipe_executor_);
  95. GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine");
  96. }
  97. GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors");
  98. return SUCCESS;
  99. }
  100. Status HybridModelAsyncExecutor::PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  101. GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data");
  102. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End");
  103. GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model");
  104. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End");
  105. return SUCCESS;
  106. }
  107. Status HybridModelAsyncExecutor::RunInternal() {
  108. auto device_id = static_cast<int32_t>(device_id_);
  109. GELOGD("Hybrid model start. model_id = %u, device_id = %u", model_id_, device_id_);
  110. GE_CHK_RT_RET(rtSetDevice(device_id));
  111. // DeviceReset before thread run finished!
  112. GE_MAKE_GUARD(not_used_var, [&] { GE_CHK_RT(rtDeviceReset(device_id)); });
  113. while (run_flag_) {
  114. std::shared_ptr<InputDataWrapper> data_wrapper;
  115. Status ret = data_inputer_->Pop(data_wrapper);
  116. if (data_wrapper == nullptr || ret != SUCCESS) {
  117. GELOGI("data_wrapper is null!, ret = %u", ret);
  118. continue;
  119. }
  120. GELOGI("Getting the input data, model_id:%u", model_id_);
  121. GE_IF_BOOL_EXEC(!run_flag_, break);
  122. InputData current_data = data_wrapper->GetInput();
  123. GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index);
  124. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_);
  125. HybridModelExecutor::ExecuteArgs args;
  126. ret = PreRun(current_data, args);
  127. GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
  128. ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  129. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  130. continue, "PreRun failed."); // [No need to check value]
  131. if (pipe_executor_ != nullptr) {
  132. GELOGI("HybridModel will execute in pipeline mode");
  133. auto iter_per_run = std::getenv("ITER_NUM");
  134. if (iter_per_run) {
  135. args.num_loops = static_cast<int>(strtol(iter_per_run, nullptr, kDefaultLoopCount));
  136. }
  137. ret = pipe_executor_->Execute(args);
  138. } else {
  139. GELOGI("HybridModel will execute in singleline mode");
  140. ge::GetContext().SetSessionId(executor_->GetContext()->session_id);
  141. ge::GetContext().SetContextId(executor_->GetContext()->context_id);
  142. ret = executor_->Execute(args);
  143. }
  144. ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  145. if (ret != SUCCESS) {
  146. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC);
  147. continue;
  148. }
  149. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] End", iterator_count_);
  150. iterator_count_++;
  151. GELOGI("run iterator count is %lu", iterator_count_);
  152. }
  153. CsaInteract::GetInstance().WriteInternalErrorCode();
  154. GELOGI("Model run end, model id:%u", model_id_);
  155. return SUCCESS;
  156. }
  157. Status HybridModelAsyncExecutor::HandleResult(Status exec_ret,
  158. uint32_t data_id,
  159. HybridModelExecutor::ExecuteArgs &args,
  160. OutputData *output_data) {
  161. GELOGD("Start to handle result. model id = %u, data index = %u, execution ret = %u", model_id_, data_id, exec_ret);
  162. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  163. if (args.is_eos) {
  164. GELOGI("End of sequence, model id = %u", model_id_);
  165. GE_CHK_STATUS_RET_NOLOG(OnComputeDone(data_id, END_OF_SEQUENCE, output_tensor_info_list));
  166. return SUCCESS;
  167. }
  168. if (exec_ret != SUCCESS) {
  169. GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_);
  170. return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  171. }
  172. GE_CHECK_NOTNULL(output_data);
  173. auto ret = CopyOutputs(args, output_data, output_tensor_info_list);
  174. if (ret != SUCCESS) {
  175. OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  176. return INTERNAL_ERROR;
  177. }
  178. GELOGD("Executed graph successfully, model id = %u, data_index = %u", model_id_, data_id);
  179. return OnComputeDone(data_id, SUCCESS, output_tensor_info_list);
  180. }
  181. Status HybridModelAsyncExecutor::SyncVarData() {
  182. GELOGI("Sync var data, model id:%u", model_id_);
  183. TensorValue *global_step_var = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  184. if (global_step_var != nullptr) {
  185. std::vector<uint64_t> v_step;
  186. v_step.push_back(iterator_count_);
  187. GE_CHK_RT_RET(rtMemcpy(global_step_var->MutableData(),
  188. global_step_var->GetSize(),
  189. v_step.data(),
  190. v_step.size() * sizeof(uint64_t),
  191. RT_MEMCPY_HOST_TO_DEVICE));
  192. } else {
  193. GELOGD("No GLOBAL_STEP variable was found.");
  194. }
  195. return SUCCESS;
  196. }
  197. Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  198. if (current_data.blobs.size() < input_tensor_desc_.size()) {
  199. GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu",
  200. input_tensor_desc_.size(), current_data.blobs.size());
  201. return PARAM_INVALID;
  202. }
  203. auto allocator = NpuMemoryAllocator::GetAllocator(device_id_);
  204. GE_CHECK_NOTNULL(allocator);
  205. args.input_desc.resize(input_tensor_desc_.size());
  206. const std::vector<DataBuffer> &blobs = current_data.blobs;
  207. for (size_t input_index = 0; input_index < input_tensor_desc_.size(); ++input_index) {
  208. auto tensor_size = input_sizes_[input_index];
  209. if (is_input_dynamic_[input_index]) {
  210. if (input_index >= current_data.shapes.size()) {
  211. GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu",
  212. input_index, current_data.shapes.size());
  213. return PARAM_INVALID;
  214. }
  215. auto &tensor_desc = input_tensor_desc_[input_index];
  216. GeShape shape(current_data.shapes[input_index]);
  217. std::vector<std::pair<int64_t, int64_t>> range;
  218. auto range_ret = tensor_desc->GetShapeRange(range);
  219. GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR,
  220. "Get shape range failed, ret=%u.", range_ret);
  221. for (size_t k = 0; k < range.size(); ++k) {
  222. if (k >= shape.GetDimNum()) {
  223. break;
  224. }
  225. // range[k].second can be -1
  226. if (shape.GetDim(k) < range[k].first || (range[k].second >= 0 && shape.GetDim(k) > range[k].second)) {
  227. GELOGE(PARAM_INVALID, "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
  228. input_index, k, shape.GetDim(k), range[k].first, range[k].second);
  229. return PARAM_INVALID;
  230. }
  231. }
  232. tensor_desc->SetShape(shape);
  233. args.input_desc[input_index] = tensor_desc;
  234. GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str());
  235. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size),
  236. "Failed to calc tensor size, index = %zu, shape = [%s]",
  237. input_index,
  238. tensor_desc->GetShape().ToString().c_str());
  239. GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size);
  240. }
  241. GE_CHECK_GE(tensor_size, 0);
  242. AllocationAttr attr;
  243. if (GetContext().GetHostExecFlag()) {
  244. attr.SetMemType(HOST_DDR);
  245. }
  246. auto tensor_buffer = TensorBuffer::Create(allocator, tensor_size, &attr);
  247. GE_CHECK_NOTNULL(tensor_buffer);
  248. args.inputs.emplace_back(std::shared_ptr<TensorBuffer>(tensor_buffer.release()));
  249. GELOGD("To copy input data for input[%zu]", input_index);
  250. const DataBuffer &data_buf = blobs[input_index];
  251. auto mem_size = static_cast<uint64_t>(tensor_size);
  252. GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length,
  253. PARAM_INVALID,
  254. "input data size(%lu) does not match model required size(%lu), ret failed.",
  255. data_buf.length,
  256. mem_size);
  257. GELOGI("[IMAS]CopyPlainData memcpy graph_%u type[F] output[%zu] memaddr[%p] mem_size[%zu] datasize[%lu]",
  258. model_->root_runtime_param_.graph_id,
  259. input_index,
  260. args.inputs[input_index].GetData(),
  261. mem_size,
  262. data_buf.length);
  263. GE_CHK_RT_RET(rtMemcpy(args.inputs[input_index].MutableData(),
  264. mem_size,
  265. data_buf.data,
  266. data_buf.length,
  267. RT_MEMCPY_HOST_TO_DEVICE));
  268. }
  269. return SUCCESS;
  270. }
  271. Status HybridModelAsyncExecutor::InitInputDesc() {
  272. int input_index = 0;
  273. for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) {
  274. GELOGD("Init input[%u], node = %s, is_dynamic = %d",
  275. input_index,
  276. input_node->NodeName().c_str(),
  277. input_node->is_dynamic);
  278. auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex);
  279. GE_CHECK_NOTNULL(output_desc);
  280. int64_t tensor_size = -1;
  281. if (!input_node->is_dynamic) {
  282. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*output_desc, tensor_size),
  283. "Failed to get size from %s",
  284. input_node->NodeName().c_str());
  285. if (tensor_size == 0) {
  286. GELOGW("[%s] Tensor size == 0", input_node->NodeName().c_str());
  287. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*output_desc, tensor_size),
  288. "Failed to calc tensor size");
  289. GELOGD("[%s] Tensor size updated to %ld", input_node->NodeName().c_str(), tensor_size);
  290. }
  291. }
  292. input_sizes_.emplace(input_index, tensor_size);
  293. input_tensor_desc_.emplace(input_index, output_desc);
  294. is_input_dynamic_.push_back(input_node->is_dynamic);
  295. input_index += 1;
  296. }
  297. return SUCCESS;
  298. }
  299. Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t result_code,
  300. std::vector<ge::OutputTensorInfo> &outputs) {
  301. GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code);
  302. if (listener_ != nullptr) {
  303. GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs),
  304. "OnComputeDone failed");
  305. }
  306. return result_code;
  307. }
  308. Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &args,
  309. OutputData *output_data,
  310. std::vector<ge::OutputTensorInfo> &outputs) {
  311. // copy output data from op to designated position
  312. std::vector<ConstGeTensorDescPtr> &output_tensor_desc_list = args.output_desc;
  313. std::vector<TensorValue> &output_tensors = args.outputs;
  314. if (output_tensor_desc_list.size() != output_tensors.size()) {
  315. GELOGE(INTERNAL_ERROR,
  316. "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu",
  317. output_tensor_desc_list.size(),
  318. output_tensors.size());
  319. return INTERNAL_ERROR;
  320. }
  321. GELOGD("Number of outputs = %zu", output_tensor_desc_list.size());
  322. for (size_t i = 0; i < output_tensors.size(); ++i) {
  323. GELOGD("Start to process output[%zu]", i);
  324. auto &output_tensor = output_tensors[i];
  325. auto &tensor_desc = output_tensor_desc_list.at(i);
  326. GE_CHECK_NOTNULL(tensor_desc);
  327. int64_t output_size = -1;
  328. GE_CHK_GRAPH_STATUS_RET(TensorUtils::CalcTensorMemSize(tensor_desc->GetShape(),
  329. tensor_desc->GetFormat(),
  330. tensor_desc->GetDataType(),
  331. output_size),
  332. "Failed to calc tensor size for output[%zu]. shape = [%s], type = %s, format = %s",
  333. i,
  334. tensor_desc->GetShape().ToString().c_str(),
  335. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  336. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str());
  337. GELOGD("Got tensor size for output[%zu] successfully. shape = [%s], type = %s, format = %s, size = %ld",
  338. i,
  339. tensor_desc->GetShape().ToString().c_str(),
  340. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  341. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str(),
  342. output_size);
  343. GE_CHECK_GE(output_size, 0);
  344. GE_CHECK_LE(output_size, UINT32_MAX);
  345. if (output_tensor.GetSize() < static_cast<size_t>(output_size)) {
  346. GELOGE(INTERNAL_ERROR,
  347. "output[%zu] tensor size(%zu) is not enough for output shape [%s]",
  348. i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
  349. return INTERNAL_ERROR;
  350. }
  351. ge::OutputTensorInfo output;
  352. output.data_type = static_cast<uint32_t>(tensor_desc->GetDataType());
  353. output.dims = tensor_desc->GetShape().GetDims();
  354. output.length = output_size;
  355. if (output_size > 0) {
  356. std::unique_ptr<uint8_t[]> data_buf(new(std::nothrow) uint8_t[output_size]);
  357. GE_CHECK_NOTNULL(data_buf);
  358. GE_CHK_RT_RET(rtMemcpy(data_buf.get(),
  359. output_size,
  360. output_tensor.GetData(),
  361. output_size,
  362. RT_MEMCPY_DEVICE_TO_HOST));
  363. output.data = std::move(data_buf);
  364. output_data->blobs.emplace_back(data_buf.get(), static_cast<uint32_t>(output_size), false);
  365. } else {
  366. GELOGW("Output[%zu] is empty. shape = [%s]", i, tensor_desc->GetShape().ToString().c_str());
  367. output.data = nullptr;
  368. output_data->blobs.emplace_back(nullptr, 0U, false);
  369. }
  370. outputs.emplace_back(std::move(output));
  371. GELOGD("Output[%zu] added, type = %s, shape = [%s], size = %ld",
  372. i,
  373. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  374. tensor_desc->GetShape().ToString().c_str(),
  375. output_size);
  376. }
  377. return SUCCESS;
  378. }
  379. Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
  380. const std::vector<GeTensorDesc> &input_desc,
  381. std::vector<DataBuffer> &outputs,
  382. std::vector<GeTensorDesc> &output_desc) {
  383. GELOGI("Start to execute model.");
  384. HybridModelExecutor::ExecuteArgs args;
  385. args.inputs.resize(inputs.size());
  386. for (size_t i = 0; i < inputs.size(); ++i) {
  387. TensorValue tensor_value(inputs[i].data, inputs[i].length);
  388. args.inputs[i] = tensor_value;
  389. }
  390. for (size_t i = 0; i < outputs.size(); ++i) {
  391. args.outputs.emplace_back(TensorValue(outputs[i].data, outputs[i].length));
  392. }
  393. // usr must designate input tensorDesc when input shape is dynamic in inference
  394. for (size_t i = 0; i < input_desc.size(); ++i) {
  395. ConstGeTensorDescPtr tensor_desc_ptr = MakeShared<GeTensorDesc>(input_desc[i]);
  396. args.input_desc.emplace_back(tensor_desc_ptr);
  397. }
  398. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  399. for (const auto &output_tensor_desc : args.output_desc) {
  400. output_desc.emplace_back(*output_tensor_desc);
  401. }
  402. return SUCCESS;
  403. }
  404. Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  405. GELOGD("Start to execute model.");
  406. // prepare inputs
  407. InputData input_data;
  408. for (auto &tensor : inputs) {
  409. DataBuffer buffer;
  410. buffer.data = const_cast<uint8_t *>(tensor.GetData().GetData());
  411. buffer.length = tensor.GetData().size();
  412. input_data.blobs.emplace_back(buffer);
  413. input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims());
  414. }
  415. HybridModelExecutor::ExecuteArgs args;
  416. GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model");
  417. GELOGD("Done copying input data successfully.");
  418. GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
  419. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  420. OutputData output_data;
  421. GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs.");
  422. GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size());
  423. int out_index = 0;
  424. outputs.resize(output_tensor_info_list.size());
  425. for (auto &out_tensor_info : output_tensor_info_list) {
  426. auto &ge_tensor = outputs[out_index];
  427. if (out_tensor_info.length > 0) {
  428. GE_CHK_GRAPH_STATUS_RET(ge_tensor.SetData(out_tensor_info.data.get(), out_tensor_info.length),
  429. "Failed to set output[%d].", out_index);
  430. }
  431. ge_tensor.MutableTensorDesc() = *args.output_desc[out_index];
  432. GELOGD("Set output[%d], tensor size = %ld, shape = [%s]",
  433. out_index,
  434. out_tensor_info.length,
  435. ge_tensor.MutableTensorDesc().MutableShape().ToString().c_str());
  436. ++out_index;
  437. }
  438. return SUCCESS;
  439. }
  440. Status HybridModelAsyncExecutor::DumpOpDebug() {
  441. const DumpProperties &dump_properties = executor_->GetContext()->dump_properties;
  442. if (dump_properties.IsOpDebugOpen()) {
  443. GELOGD("Opdebug is open in hybrid engine");
  444. uint32_t op_debug_mode = dump_properties.GetOpDebugMode();
  445. GE_CHK_RT_RET(op_debug_register_.RegisterDebugForStream(stream_, op_debug_mode, data_dumper_));
  446. is_op_debug_reg_ = true;
  447. data_dumper_.SetDumpProperties(dump_properties);
  448. data_dumper_.SetModelName(model_->GetModelName());
  449. data_dumper_.SetModelId(model_->GetModelId());
  450. data_dumper_.SetDeviceId(model_->GetDeviceId());
  451. void *global_step = nullptr;
  452. TensorValue *varible_global_step = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  453. if (varible_global_step != nullptr) {
  454. global_step = const_cast<void *>(varible_global_step->GetData());
  455. }
  456. void *loop_per_iter = nullptr;
  457. TensorValue *varible_loop_per_iter = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  458. if (varible_loop_per_iter != nullptr) {
  459. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  460. }
  461. void *loop_cond = nullptr;
  462. TensorValue *varible_loop_cond = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  463. if (varible_loop_cond != nullptr) {
  464. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  465. }
  466. data_dumper_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  467. GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "LoadDumpInfo failed in hybrid engine");
  468. GELOGD("Dump op debug SUCCESS in hybrid engine");
  469. }
  470. return SUCCESS;
  471. }
  472. } // namespace hybrid
  473. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示