You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

bitwise_ops.h 2.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. /**
  2. * Copyright 2019 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file bitwise_ops.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. *@brief Element-wise computes the bitwise left-shift of x and y . \n
  26. *@par Inputs:
  27. *Input "x" is a k-dimensional tensor. Inputs "num_lower" and "num_upper"
  28. are 0D scalars.
  29. * @li x: A Tensor. Must be one of the following types: int8, int16, int32,
  30. int64, uint8, uint16, uint32, uint64.
  31. * @li y: A Tensor. Has the same type as "x". \n
  32. *@par Outputs:
  33. * z: A Tensor. Has the same type as "x". \n
  34. *@attention Constraints:
  35. *Unique runs on the Ascend AI CPU, which delivers poor performance. \n
  36. *@par Third-party framework compatibility
  37. *Compatible with the TensorFlow operator LeftShift.
  38. */
  39. REG_OP(LeftShift)
  40. .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  41. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  42. .INPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  43. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  44. .OUTPUT(z, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  45. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  46. .OP_END_FACTORY_REG(LeftShift)
  47. /**
  48. *@brief Element-wise computes the bitwise right-shift of x and y . \n
  49. *@par Inputs:
  50. *Input "x" is a k-dimensional tensor. Inputs "num_lower" and "num_upper"
  51. are 0D scalars.
  52. * @li x: A Tensor. Must be one of the following types: int8, int16, int32,
  53. int64, uint8, uint16, uint32, uint64.
  54. * @li y: A Tensor. Has the same type as "x". \n
  55. *@par Outputs:
  56. * z: A Tensor. Has the same type as "x". \n
  57. *@attention Constraints:
  58. *Unique runs on the Ascend AI CPU, which delivers poor performance. \n
  59. *@par Third-party framework compatibility
  60. *Compatible with the TensorFlow operator RightShift.
  61. */
  62. REG_OP(RightShift)
  63. .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  64. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  65. .INPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  66. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  67. .OUTPUT(z, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \
  68. DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64}))
  69. .OP_END_FACTORY_REG(RightShift)
  70. } // namespace ge
  71. #endif // OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示