You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

case_condition_ops.h 1.5 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. /**
  2. * Copyright 2019 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file case_condition_ops.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_CASE_CONDITION_OPS_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_CASE_CONDITION_OPS_H_
  22. #include "graph/operator_reg.h"
  23. namespace ge {
  24. /**
  25. *@brief x[0] is i, x[1] is j and x[2] is k when algorithm is LU,
  26. y = 0 when i >= k && j < k,
  27. y = 1 when i == k && j == k,
  28. y = 2 when i > k && j == k,
  29. y = 3 when i == k && j > k,
  30. y = 4 when i > k && j > k,
  31. default y = 5
  32. use for lu decomposition
  33. *@par Inputs:
  34. *x: A Tensor of type int32/int64/uint64. \n
  35. *@par Attributes:
  36. *algorithm: A string, only support LU now
  37. *@par Outputs:
  38. *y: A Tensor of type int32
  39. */
  40. REG_OP(CaseCondition)
  41. .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_UINT64}))
  42. .OUTPUT(y, TensorType({DT_INT32}))
  43. .ATTR(algorithm, String, "LU")
  44. .OP_END_FACTORY_REG(CaseCondition)
  45. } // namespace ge
  46. #endif // OPS_BUILT_IN_OP_PROTO_INC_CASE_CONDITION_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示