You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

math_ops.h 27 kB

5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889
  1. /**
  2. * Copyright 2019 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. /*!
  17. * \file math_ops.h
  18. * \brief
  19. */
  20. #ifndef OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_
  21. #define OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_
  22. #include "graph/operator_reg.h"
  23. #include "graph/operator.h"
  24. namespace ge {
  25. /**
  26. *@brief Computes the output as (shift + scale * x) ^ power . \n
  27. *@par Inputs:
  28. * x: A Tensor of type float16 or float32 . \n
  29. *@par Attributes:
  30. *@li power: Optional. Must be one of the following types: float32. Defaults to 1.0.
  31. *@li scale: Optional. Must be one of the following types: float32. Defaults to 1.0.
  32. *@li shift: Optional. Must be one of the following types: float32. Defaults to 0.0 . \n
  33. *@par Outputs:
  34. * y: A Tensor. Has the same type and shape as "x".
  35. *@par Third-party framework compatibility
  36. * Compatible with the Caffe operator Power.
  37. */
  38. REG_OP(Power)
  39. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  40. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  41. .ATTR(power, Float, 1.0)
  42. .ATTR(scale, Float, 1.0)
  43. .ATTR(shift, Float, 0.0)
  44. .OP_END_FACTORY_REG(Power);
  45. /**
  46. *@brief Compute the lower regularized incomplete Gamma function P(a, x) . \n
  47. *@par Inputs:
  48. *The input a and x must have the same type. Inputs include:
  49. *@li a:A Tensor. Must be one of the following types: float, double.
  50. *@li x:A Tensor. Must have the same type as a . \n
  51. *@par Outputs:
  52. *z:A Tensor. Has the same type as a . \n
  53. *@par Third-party framework compatibility.
  54. *Compatible with tensorflow Igamma operator.
  55. */
  56. REG_OP(Igamma)
  57. .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
  58. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
  59. .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
  60. .OP_END_FACTORY_REG(Igamma)
  61. /**
  62. *@brief Compute the upper regularized incomplete Gamma function Q(a, x) . \n
  63. *@par Inputs:
  64. *The input a and x must have the same type. Inputs include:
  65. *@li a:A Tensor. Must be one of the following types: float, float64.
  66. *@li x:A Tensor. Must have the same type as a . \n
  67. *@par Outputs:
  68. *z:A Tensor. Has the same type as a . \n
  69. *@par Third-party framework compatibility.
  70. *Compatible with tensorflow Igammac operator.
  71. */
  72. REG_OP(Igammac)
  73. .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
  74. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
  75. .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
  76. .OP_END_FACTORY_REG(Igammac)
  77. /**
  78. *@brief Compare values of input to threshold and pack resulting bits into
  79. a uint8 . \n
  80. *@par Inputs:
  81. *The input size must be a non-negative int32 scalar Tensor. Inputs include:
  82. *@li input:Values to compare against threshold and bitpack.
  83. *@li threshold:Threshold to compare against . \n
  84. *@par Outputs:
  85. *y:The bitpacked comparisons . \n
  86. *@attention Constraints:
  87. *Currently, the innermost dimension of the tensor must be divisible by 8. \n
  88. *@par Third-party framework compatibility
  89. *Compatible with tensorflow CompareAndBitpack operator
  90. */
  91. REG_OP(CompareAndBitpack)
  92. .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, \
  93. DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
  94. .INPUT(threshold, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \
  95. DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_BOOL }))
  96. .OUTPUT(y, TensorType(DT_UINT8))
  97. .OP_END_FACTORY_REG(CompareAndBitpack)
  98. /**
  99. *@brief Counts the number of occurrences of each value in an integer array.
  100. Outputs a vector with length size and the same dtype as weights. If weights
  101. are empty, then index i stores the number of times the value i is counted in
  102. arr. If weights are non-empty, then index i stores the sum of the value in
  103. weights at each index . \n
  104. *@par Inputs:
  105. *The input size must be a non-negative int32 scalar Tensor. Inputs include:
  106. *@li array:int32 Tensor.
  107. *@li size:non-negative int32 scalar Tensor.
  108. *@li weights: is an int32, int64, float32, or double Tensor with the same
  109. shape as arr, or a length-0 Tensor, in which case it acts as all weights
  110. equal to 1 . \n
  111. *@par Outputs:
  112. *bins:1D Tensor with length equal to size. The counts or summed weights for
  113. each value in the range [0, size) . \n
  114. *@par Third-party framework compatibility
  115. *Compatible with tensorflow Bincount operator
  116. */
  117. REG_OP(Bincount)
  118. .INPUT(array, TensorType(DT_INT32))
  119. .INPUT(size, TensorType(DT_INT32))
  120. .INPUT(weights, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
  121. .OUTPUT(bins, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE }))
  122. .OP_END_FACTORY_REG(Bincount)
  123. /**
  124. *@brief Compute the regularized incomplete beta integral . \n
  125. *@par Inputs:
  126. *The input b and x must have the same types as a. Inputs include:
  127. *@li a:A Tensor. Must be one of the following types: float32, double.
  128. *@li b:A Tensor. Must have the same type as a.
  129. *@li x:A Tensor. Must have the same type as a . \n
  130. *@par Outputs:
  131. *z:A Tensor. Has the same type as a . \n
  132. *@par Third-party framework compatibility.
  133. *Compatible with tensorflow Betainc operator.
  134. */
  135. REG_OP(Betainc)
  136. .INPUT(a, TensorType({DT_DOUBLE, DT_FLOAT}))
  137. .INPUT(b, TensorType({DT_DOUBLE, DT_FLOAT}))
  138. .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
  139. .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
  140. .OP_END_FACTORY_REG(Betainc)
  141. /**
  142. *@brief Compute the Hurwitz zeta function
  143. *@par Inputs:
  144. *The input q must be the same type as x. Inputs include:
  145. *@li x:A Tensor. Must be one of the following types: float32, double.
  146. *@li q:A Tensor. Must have the same type as x . \n
  147. *@par Outputs:
  148. *z:A Tensor. Has the same type as x . \n
  149. *@attention Constraints:
  150. *The implementation for Zeta on Ascend uses ai cpu, with bad performance.
  151. *@par Third-party framework compatibility.
  152. *Compatible with tensorflow Zeta operator.
  153. */
  154. REG_OP(Zeta)
  155. .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT}))
  156. .INPUT(q, TensorType({DT_DOUBLE, DT_FLOAT}))
  157. .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT}))
  158. .OP_END_FACTORY_REG(Zeta)
  159. /**
  160. *@brief Bucketize 'input' based on 'boundaries'. For example, if the inputs
  161. are boundaries = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]] then
  162. the output will be output = [[0, 3] [3, 2] [1, 3]]
  163. *@par Inputs:
  164. *The dtype of input x int float double. Inputs include:
  165. *x:Any shape of Tensor contains with int or float type . \n
  166. *@par Attributes:
  167. *boundaries:A sorted list of floats gives the boundary of the buckets . \n
  168. *@par Outputs:
  169. *y:Same shape with 'input', each value of input replaced with bucket index . \n
  170. *@par Third-party framework compatibility.
  171. *Compatible with tensorflow Bucketize operator.
  172. */
  173. REG_OP(Bucketize)
  174. .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT}))
  175. .OUTPUT(y, TensorType({DT_INT32}))
  176. .REQUIRED_ATTR(boundaries, ListFloat)
  177. .OP_END_FACTORY_REG(Bucketize)
  178. /**
  179. *@brief Computes the sum along sparse segments of a tensor . \n
  180. *@par Inputs:
  181. *The input indices and segment_ids must have same rank. Inputs include:
  182. *@li x:A Tensor. Must be one of the following types: float, double, int32,
  183. uint8, int16, int8, int64, uint16, uint32, uint64.
  184. *@li indices: A Tensor. Must be one of the following types: int32, int64.
  185. A 1-D tensor. Has same rank as segment_ids.
  186. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be
  187. sorted and can be repeated . \n
  188. *@par Outputs:
  189. *y:A Tensor. Has the same type as x . \n
  190. *@par Third-party framework compatibility
  191. *Compatible with tensorflow SparseSegmentSum operator
  192. */
  193. REG_OP(SparseSegmentSum)
  194. .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
  195. DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  196. .INPUT(indices, TensorType({DT_INT32}))
  197. .INPUT(segment_ids, TensorType({DT_INT32}))
  198. .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
  199. DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
  200. .OP_END_FACTORY_REG(SparseSegmentSum)
  201. /**
  202. *@brief Computes the mean along sparse segments of a tensor . \n
  203. *@par Inputs:
  204. *The input indices and segment_ids must have same rank. Inputs include:
  205. *@li x: A Tensor. Must be one of the following types: float, double.
  206. *@li indices: A Tensor. Must be one of the following types: int32, int64.
  207. A 1-D tensor. Has same rank as segment_ids.
  208. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be
  209. sorted and can be repeated . \n
  210. *@par Outputs:
  211. *y:A Tensor. Has the same type as x . \n
  212. *@par Third-party framework compatibility
  213. *Compatible with tensorflow SparseSegmentMean operator
  214. */
  215. REG_OP(SparseSegmentMean)
  216. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
  217. .INPUT(indices, TensorType({DT_INT32}))
  218. .INPUT(segment_ids, TensorType({DT_INT32}))
  219. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
  220. .OP_END_FACTORY_REG(SparseSegmentMean)
  221. /**
  222. *@brief Computes gradients for SparseSegmentMean . \n
  223. *@par Inputs:
  224. *The input grad must have be type float or double. Inputs include:
  225. *@li grad: A Tensor. Must be one of the following types: float, double.
  226. gradient propagated to the SparseSegmentMean op.
  227. *@li indices: A Tensor. Must be one of the following types: int32, int64.
  228. indices passed to the corresponding SparseSegmentMean op.
  229. *@li segment_ids: A Tensor of type int32. segment_ids passed to the
  230. corresponding SparseSegmentMean op.
  231. *@li output_dim0: A Tensor of type int32. dimension 0 of "x" passed to
  232. SparseSegmentMean op . \n
  233. *@par Outputs:
  234. *y:A Tensor. Has the same type as grad . \n
  235. *@par Third-party framework compatibility
  236. *Compatible with tensorflow SparseSegmentMeanGrad operator
  237. */
  238. REG_OP(SparseSegmentMeanGrad)
  239. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
  240. .INPUT(indices, TensorType({DT_INT32}))
  241. .INPUT(segment_ids, TensorType({DT_INT32}))
  242. .INPUT(output_dim0, TensorType({DT_INT32}))
  243. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
  244. .OP_END_FACTORY_REG(SparseSegmentMeanGrad)
  245. /**
  246. *@brief Computes the gradient of igamma(a, x) wrt a
  247. *@par Inputs:
  248. *The input a and x must have the same type. Inputs include:
  249. *@li a:A Tensor. Must be one of the following types: float32, double.
  250. *@li x:A Tensor. Must have the same type as a . \n
  251. *@par Outputs:
  252. *y:A Tensor. Has the same type as a . \n
  253. *@par Third-party framework compatibility
  254. *Compatible with tensorflow IgammaGradA operator
  255. */
  256. REG_OP(IgammaGradA)
  257. .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE}))
  258. .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
  259. .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE}))
  260. .OP_END_FACTORY_REG(IgammaGradA)
  261. /**
  262. *@brief Initialize data process channel . \n
  263. *@par Attributes:
  264. *channel_name: A string. Default "" . \n
  265. *@par Third-party framework compatibility
  266. *Compatible with tensorflow InitData operator
  267. */
  268. REG_OP(InitData)
  269. .ATTR(channel_name, String, "")
  270. .OP_END_FACTORY_REG(InitData)
  271. /**
  272. *@brief Get the next batch of data in data processing . \n
  273. *@par Attributes:
  274. *@li output_types: A nested structure of DType objects corresponding to each
  275. component of an element of this dataset.
  276. *@li output_shapes: A nested structure of TensorShape objects corresponding
  277. to each component of an element of this dataset.
  278. *@li channel_name: A string. Default "" . \n
  279. *@par Outputs:
  280. *y:A nested structure of Tensor objects . \n
  281. *@par Third-party framework compatibility
  282. *Compatible with tensorflow GetNext operator
  283. */
  284. REG_OP(GetNext)
  285. .DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64,
  286. DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL}))
  287. .ATTR(output_types, ListInt, {})
  288. .ATTR(output_shapes, ListListInt, {})
  289. .ATTR(output_num, Int, 1)
  290. .ATTR(channel_name, String, "")
  291. .OP_END_FACTORY_REG(GetNext)
  292. /**
  293. *@brief Get dynamic dims after GetNext. \n
  294. *@par Inputs:
  295. *input: A nested structure of Tensor objects, from GetNext's output. \n
  296. *@par Attributes:
  297. *@li shape_info: GE shape_info for each inputs, -1 means unknow dim.
  298. *@li N: Inputs number. \n
  299. *@par Outputs:
  300. *dims: GE unknow dims, a vector of int64. \n
  301. */
  302. REG_OP(GetDynamicDims)
  303. .DYNAMIC_INPUT(input, TensorType({DT_INT32, DT_INT64}))
  304. .OUTPUT(dims, TensorType({DT_INT32, DT_INT64}))
  305. .REQUIRED_ATTR(shape_info, ListInt)
  306. .REQUIRED_ATTR(N, Int)
  307. .OP_END_FACTORY_REG(GetDynamicDims)
  308. /**
  309. *@brief End of sequence . \n
  310. *@par Inputs:
  311. *x: A Tensor of type uint8 . \n
  312. *@par Outputs:
  313. *y: A Tensor. Has the same type as "x".
  314. */
  315. REG_OP(EndOfSequence)
  316. .INPUT(x, TensorType({DT_UINT8}))
  317. .OUTPUT(y, TensorType({DT_UINT8}))
  318. .OP_END_FACTORY_REG(EndOfSequence)
  319. /**
  320. *@brief: Computes the Gauss error function of `x` element-wise . \n
  321. *@par Inputs:
  322. *x: A Tensor of type float16, float32 or double. the format can be
  323. * [NCHW,NC1HWC0,NHWC,ND]
  324. *@par Outputs:
  325. *y: A Tensor. Has the same type and format as "x" . \n
  326. *@par Third-party framework compatibility
  327. * Compatible with the TensorFlow operator Erf.
  328. */
  329. REG_OP(Erf)
  330. .INPUT(x, TensorType::FloatingDataType())
  331. .OUTPUT(y, TensorType::FloatingDataType())
  332. .OP_END_FACTORY_REG(Erf)
  333. /**
  334. *@brief: Computes the Gauss complementary error function of "x" element-wise . \n
  335. *@par Inputs:
  336. *x: A Tensor of type float16 ,float32, double . \n
  337. *@par Outputs:
  338. *y: A Tensor. Has the same type as "x" . \n
  339. *@par Third-party framework compatibility
  340. * Compatible with the TensorFlow operator Erfc.
  341. */
  342. REG_OP(Erfc)
  343. .INPUT(x, TensorType::FloatingDataType())
  344. .OUTPUT(y, TensorType::FloatingDataType())
  345. .OP_END_FACTORY_REG(Erfc)
  346. /**
  347. *@brief This operation returns a rank 1 histogram counting the number of entries in `values`
  348. * that fell into every bin.The bins are equal width and determined by the arguments
  349. * 'value_range' and 'nbins' . \n
  350. *@par Inputs:
  351. *Three inputs, including:
  352. *@li x: A Tensor of type float32, float16, int32, int64.
  353. *@li range: A Tensor of type float32,float16,int32, int64.
  354. *@li nbins: A Tensor of type int32 . \n
  355. *@par Attributes:
  356. * dtype: An optional attribute. Defaults to "int32" . \n
  357. *@par Outputs:
  358. *y: A Tensor. A Tensor of type int32 or int64 . \n
  359. *@par Third-party framework compatibility
  360. * Compatible with TensorFlow operator HistogramFixedWidth.
  361. */
  362. REG_OP(HistogramFixedWidth)
  363. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
  364. .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
  365. .INPUT(nbins, TensorType({DT_INT32}))
  366. .OUTPUT(y, TensorType({DT_INT32}))
  367. .ATTR(dtype, String, "int32")
  368. .OP_END_FACTORY_REG(HistogramFixedWidth)
  369. /**
  370. *@brief This operation returns a rank 1 histogram counting the number of entries in `values`
  371. * that fell into every bin.The bins are equal width and determined by the arguments
  372. * 'value_range' and 'nbins' . \n
  373. *@par Inputs:
  374. *Two inputs, including:
  375. *@li x: A Tensor of type float32,float16,int32, int64.
  376. *@li range: A Tensor of type float32,float16,int32, int64 . \n
  377. *@par Attributes:
  378. *@li dtype: An optional attribute. Defaults to "int32".
  379. *@li nbins: A required attribute,the type is int32 . \n
  380. *@par Outputs:
  381. *y: A Tensor. A Tensor of type int32 . \n
  382. *@par Third-party framework compatibility
  383. * Compatible with TensorFlow operator HistogramFixedWidth.
  384. *
  385. * @par Restrictions:
  386. * Warning: THIS FUNCTION IS DEPRECATED. Please use HistogramFixedWidth instead.
  387. */
  388. REG_OP(HistogramFixedWidthD)
  389. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
  390. .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64}))
  391. .OUTPUT(y, TensorType({DT_INT32}))
  392. .REQUIRED_ATTR(nbins, Int)
  393. .ATTR(dtype, String, "int32")
  394. .OP_END_FACTORY_REG(HistogramFixedWidthD)
  395. /**
  396. *@brief Returns the next representable value of x1 in the direction of x2, element-wise . \n
  397. *@par Inputs:
  398. *The input X1 and x2 must have the same type. Inputs include:
  399. *@li x1:A Tensor. Must be one of the following types: float32, double.
  400. *@li x2:A Tensor. Must have the same type as x1 . \n
  401. *@par Outputs:
  402. *output:A Tensor. Has the same type as x1 . \n
  403. *@par Third-party framework compatibility
  404. *Compatible with tensorflow NextAfter operator
  405. */
  406. REG_OP(NextAfter)
  407. .INPUT(x1, TensorType({DT_FLOAT, DT_DOUBLE}))
  408. .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE}))
  409. .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
  410. .OP_END_FACTORY_REG(NextAfter)
  411. /**
  412. *@brief Compute element-wise finiteness, return a boolean tensor.
  413. *@par Inputs:
  414. *x:A Tensor.
  415. *@par Outputs:
  416. *y:A Tensor. Has the same shape as x.
  417. *@par Third-party framework compatibility.
  418. *Compatible with tensorflow IsFinite operator.
  419. */
  420. REG_OP(IsFinite)
  421. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  422. .OUTPUT(y, TensorType({DT_BOOL}))
  423. .OP_END_FACTORY_REG(IsFinite)
  424. /**
  425. *@brief Compute element-wise infiniteness, return a boolean tensor.
  426. *@par Inputs:
  427. *x:A Tensor.
  428. *@par Outputs:
  429. *y:A Tensor. Has the same shape as x.
  430. *@par Third-party framework compatibility.
  431. *Compatible with tensorflow IsInf operator.
  432. */
  433. REG_OP(IsInf)
  434. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  435. .OUTPUT(y, TensorType({DT_BOOL}))
  436. .OP_END_FACTORY_REG(IsInf)
  437. /**
  438. *@brief Computes the complex absolute value of a tensor.
  439. *@par Inputs:
  440. *x:A Tensor.
  441. *@par Outputs:
  442. *y:A tensor of type `float` or `double` that is the absolute value of each element in `x`.
  443. *@par Third-party framework compatibility.
  444. *Compatible with tensorflow ComplexAbs operator.
  445. */
  446. REG_OP(ComplexAbs)
  447. .INPUT(x, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
  448. .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
  449. .ATTR(Tout, Type, DT_FLOAT)
  450. .OP_END_FACTORY_REG(ComplexAbs)
  451. /**
  452. *@brief Returns which elements of x are NaN.
  453. *@par Inputs:
  454. *x:A Tensor.
  455. *@par Outputs:
  456. *y:A Tensor. Has the same shape as x.
  457. *@par Third-party framework compatibility.
  458. *Compatible with tensorflow IsNan operator.
  459. */
  460. REG_OP(IsNan)
  461. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
  462. .OUTPUT(y, TensorType({DT_BOOL}))
  463. .OP_END_FACTORY_REG(IsNan)
  464. /**
  465. *@brief Returns the real part of a complex number.
  466. *@par Inputs:
  467. *input:A Tensor.
  468. *@par Outputs:
  469. *output:A Tensor. Has the same shape as input.
  470. *@par Third-party framework compatibility.
  471. *Compatible with tensorflow Real operator.
  472. */
  473. REG_OP(Real)
  474. .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
  475. .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE}))
  476. .ATTR(Tout, Type, DT_FLOAT)
  477. .OP_END_FACTORY_REG(Real)
  478. /**
  479. *@brief Returns the complex conjugate of a complex number.
  480. *@par Inputs:
  481. *input:A Tensor.
  482. *@par Outputs:
  483. *output:A Tensor. Has the same shape as input.
  484. *@par Third-party framework compatibility.
  485. *Compatible with tensorflow output operator.
  486. */
  487. REG_OP(Conj)
  488. .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
  489. .OUTPUT(output, TensorType({DT_COMPLEX64, DT_COMPLEX128}))
  490. .OP_END_FACTORY_REG(Conj)
  491. /**
  492. *@brief The negative log likelihood loss . \n
  493. *@par Inputs:
  494. *The input x and weight must have the same type. Inputs include:
  495. *@li x: A Tensor dtype of float32.
  496. *@li target: A Tensor dtype of int32.
  497. *@li weight: A Tensor dtype of float32 . \n
  498. *@par Attributes:
  499. *reduction: An optional attribute. Defaults to "mean" . \n
  500. *@par Outputs:
  501. *@li y: A Tensor dtype of float32.
  502. *@li total_weight: A Tensor dtype of float32 . \n
  503. *@par Third-party framework compatibility
  504. *Compatible with pytorch NLLLoss operator
  505. */
  506. REG_OP(NLLLoss)
  507. .INPUT(x, TensorType({DT_FLOAT}))
  508. .INPUT(target, TensorType({DT_INT32}))
  509. .INPUT(weight, TensorType({DT_FLOAT}))
  510. .OUTPUT(y, TensorType({DT_FLOAT}))
  511. .OUTPUT(total_weight, TensorType({DT_FLOAT}))
  512. .ATTR(reduction, String, "mean")
  513. .OP_END_FACTORY_REG(NLLLoss)
  514. /**
  515. *@brief The negative log likelihood loss grad . \n
  516. *@par Inputs:
  517. *@li x:A Tensor dtype of float32.
  518. *@li y_grad:A Tensor dtype of float32.
  519. *@li target:A Tensor dtype of int32.
  520. *@li weight:A Tensor dtype of float32.
  521. *@li total_weight:A Tensor dtype of float32 . \n
  522. *@par Attributes:
  523. *reduction: An optional attribute. Defaults to "mean" . \n
  524. *@par Outputs:
  525. *x_grad: A Tensor. Must be the following type: float32 . \n
  526. *@par Third-party framework compatibility
  527. *Compatible with pytorch NLLLossGrad operator
  528. */
  529. REG_OP(NLLLossGrad)
  530. .INPUT(x, TensorType({DT_FLOAT}))
  531. .INPUT(y_grad, TensorType({DT_FLOAT}))
  532. .INPUT(target, TensorType({DT_INT32}))
  533. .INPUT(weight, TensorType({DT_FLOAT}))
  534. .INPUT(total_weight, TensorType({DT_FLOAT}))
  535. .OUTPUT(x_grad, TensorType({DT_FLOAT}))
  536. .ATTR(reduction, String, "mean")
  537. .OP_END_FACTORY_REG(NLLLossGrad)
  538. /**
  539. *@brief The ifmr . \n
  540. *@par Inputs:
  541. *@li data:A Tensor of feature map
  542. *@li data_min:A Tensor of min value of feature map.
  543. *@li data_max:A Tensor of max value of feature map.
  544. *@li cumsum:A Tensor of cumsum bin of data . \n
  545. *@par Attributes:
  546. *min_percentile: min init percentile.
  547. *max_percentile: max init percentile.
  548. *search_range: search range.
  549. *search_step: step size of searching.
  550. *with_offset: whether using offset . \n
  551. *@par Outputs:
  552. *scale: optimal scale.
  553. *offset: optimal offset . \n
  554. *@par Third-party framework compatibility
  555. *Compatible with mindspore
  556. */
  557. REG_OP(IFMR)
  558. .INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT}))
  559. .INPUT(data_min, TensorType({DT_FLOAT16, DT_FLOAT}))
  560. .INPUT(data_max, TensorType({DT_FLOAT16, DT_FLOAT}))
  561. .INPUT(cumsum, TensorType({DT_INT32}))
  562. .OUTPUT(scale, TensorType({DT_FLOAT}))
  563. .OUTPUT(offset, TensorType({DT_FLOAT}))
  564. .REQUIRED_ATTR(min_percentile, Float)
  565. .REQUIRED_ATTR(max_percentile, Float)
  566. .REQUIRED_ATTR(search_range, ListFloat)
  567. .REQUIRED_ATTR(search_step, Float)
  568. .REQUIRED_ATTR(with_offset, Bool)
  569. .OP_END_FACTORY_REG(IFMR)
  570. /**
  571. *@brief weights adaptive range quantization. \n
  572. *@par Inputs:
  573. *@li w:A Tensor of weights. \n
  574. *@li w_min:A Tensor of weights reduce_min. \n
  575. *@li w_max:A Tensor of weights reduce_max. \n
  576. *@par Attributes:
  577. *num_bits: the bits num used for quantize.
  578. *offset_flag: whether using offset. \n
  579. *@par Outputs:
  580. *y: fake quantized weights. \n
  581. *@par Third-party framework compatibility
  582. *Compatible with mindspore
  583. *@par Restrictions:
  584. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  585. */
  586. REG_OP(WtsARQ)
  587. .INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
  588. .INPUT(w_min, TensorType({DT_FLOAT16, DT_FLOAT}))
  589. .INPUT(w_max, TensorType({DT_FLOAT16, DT_FLOAT}))
  590. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  591. .ATTR(num_bits, Int, 8)
  592. .ATTR(offset_flag, Bool, false)
  593. .OP_END_FACTORY_REG(WtsARQ)
  594. /**
  595. *@brief The acts_ulq. \n
  596. *@par Inputs:
  597. *@li x:A Tensor of feature map
  598. *@li clamp _min:A Tensor of min clamp value of feature map.
  599. *@li clamp _max:A Tensor of max clamp value of feature map.
  600. *@par Attributes:
  601. *fixed_min: fix min to zero.
  602. *num_bits: quant bits. \n
  603. *@par Outputs:
  604. *y: output fake quant feature map.
  605. *clamp_min_mask: where x > clamp_min
  606. *clamp_min_mask: where x < clamp_max
  607. *x_clamped_loss: clamp loss. \n
  608. *@par Third-party framework compatibility
  609. *Compatible with mindspore
  610. *@par Restrictions:
  611. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  612. */
  613. REG_OP(ActsULQ)
  614. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  615. .INPUT(clamp_min, TensorType({DT_FLOAT16, DT_FLOAT}))
  616. .INPUT(clamp_max, TensorType({DT_FLOAT16, DT_FLOAT}))
  617. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  618. .OUTPUT(clamp_min_mask, TensorType({DT_BOOL}))
  619. .OUTPUT(clamp_max_mask, TensorType({DT_BOOL}))
  620. .OUTPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
  621. .ATTR(fixed_min, Bool, false)
  622. .ATTR(num_bits, Int, 8)
  623. .OP_END_FACTORY_REG(ActsULQ)
  624. /**
  625. *@brief The acts_ulq_input_grad. \n
  626. *@par Inputs:
  627. *@li y_grad: A Tensor of gradient
  628. *@li clamp_min_mask: A Tensor of boolean mask indicating whether an additional one is needed'
  629. *@li clamp_max_mask: A Tensor of boolean mask indicating whether an additional one is needed'
  630. *@par Outputs:
  631. *x_grapd: The gradient of inpust. \n
  632. *@par Third-party framework compatibility
  633. *Compatible with mindspore
  634. *@par Restrictions:
  635. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  636. */
  637. REG_OP(ActsULQInputGrad)
  638. .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  639. .INPUT(clamp_min_mask, TensorType({DT_BOOL}))
  640. .INPUT(clamp_max_mask, TensorType({DT_BOOL}))
  641. .OUTPUT(x_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  642. .OP_END_FACTORY_REG(ActsULQInputGrad)
  643. /**
  644. *@brief The act_ulq_clamp_max_grad. \n
  645. *@par Inputs:
  646. *@li y_grad: A Tensor of gradient
  647. *@li clamp_max_mask: A Tensor of boolean mask indicating whether an additional one is needed.
  648. *@li x_clamped_loss: A Tensor of gradient. \n
  649. *@par Outputs:
  650. *clamp_max_grad: The gradient of clamp max. \n
  651. *@par Third-party framework compatibility
  652. *Compatible with mindspore
  653. *@par Restrictions:
  654. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  655. */
  656. REG_OP(ActULQClampMaxGrad)
  657. .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  658. .INPUT(clamp_max_mask, TensorType({DT_BOOL}))
  659. .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
  660. .OUTPUT(clamp_max_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  661. .OP_END_FACTORY_REG(ActULQClampMaxGrad)
  662. /**
  663. *@brief The act_ulq_clamp_min_grad. \n
  664. *@par Inputs:
  665. *@li y_grad: A Tensor of gradient
  666. *@li clamp_min_mask: A Tensor of boolean mask indicating whether an additional one is needed.
  667. *@li x_clamped_loss: A Tensor of gradient. \n
  668. *@par Outputs:
  669. *clamp_min_grad: The gradient of clamp min. \n
  670. *@par Third-party framework compatibility
  671. *Compatible with mindspore
  672. *@par Restrictions:
  673. *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
  674. */
  675. REG_OP(ActULQClampMinGrad)
  676. .INPUT(y_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  677. .INPUT(clamp_min_mask, TensorType({DT_BOOL}))
  678. .INPUT(x_clamped_loss, TensorType({DT_FLOAT16, DT_FLOAT}))
  679. .OUTPUT(clamp_min_grad, TensorType({DT_FLOAT16, DT_FLOAT}))
  680. .OP_END_FACTORY_REG(ActULQClampMinGrad)
  681. /**
  682. * @brief Computes Lp norm.
  683. * @par Inputs:
  684. * @li x: An ND tensor of type float16, float32. \n
  685. *
  686. * @par Attributes:
  687. * @li p: Int, "inf" or "-inf", default value is 2.
  688. * @li axes: ListInt, {} means all axes will be computed.
  689. * @li keepdim: Bool, default is false.
  690. * @li epsilon: Float, default is 1e-12. \n
  691. * @par Outputs:
  692. * @li y: An ND tensor of type float16, float32. The shape of y is depending
  693. * on axes and keepdim. \n
  694. * @par Third-party framework compatibility
  695. * Compatible with the Pytorch operator LpNorm.
  696. */
  697. REG_OP(LpNorm)
  698. .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
  699. .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
  700. .ATTR(p, Int, 2)
  701. .ATTR(axes, ListInt, {})
  702. .ATTR(keepdim, Bool, false)
  703. .ATTR(epsilon, Float, 1e-12)
  704. .OP_END_FACTORY_REG(LpNorm)
  705. } // namespace ge
  706. #endif // OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示