You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

label_switch_task.cc 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "ge_runtime/task/label_switch_task.h"
  17. #include "ge_runtime/task/task_factory.h"
  18. namespace ge {
  19. namespace model_runner {
  20. LabelSwitchTask::LabelSwitchTask(const ModelContext &model_context,
  21. const std::shared_ptr<LabelSwitchTaskInfo> &task_info)
  22. : TaskRepeater<LabelSwitchTaskInfo>(model_context, task_info),
  23. task_info_(task_info),
  24. stream_(nullptr),
  25. label_info_(nullptr) {
  26. if (task_info_ == nullptr) {
  27. GELOGW("task_info_ is null!");
  28. return;
  29. }
  30. rt_model_handle_ = model_context.rt_model_handle();
  31. auto all_label_resource = model_context.label_list();
  32. auto stream_list = model_context.stream_list();
  33. uint32_t stream_id = task_info->stream_id();
  34. GELOGI("Stream list size:%zu, stream id:%u.", stream_list.size(), stream_id);
  35. if (stream_id >= stream_list.size()) {
  36. GELOGW("Stream id invalid.");
  37. return;
  38. }
  39. stream_ = stream_list[stream_id];
  40. label_manager_ = LabelManager::GetInstance();
  41. if (label_manager_ == nullptr) {
  42. GELOGW("Get label manager instance failed.");
  43. return;
  44. }
  45. label_info_ = label_manager_->GetLabelInfo(rt_model_handle_, task_info_->label_list(), all_label_resource);
  46. }
  47. LabelSwitchTask::~LabelSwitchTask() {}
  48. bool LabelSwitchTask::Distribute() {
  49. GELOGI("LabelSwitchTask Distribute start.");
  50. if (!CheckParamValid()) {
  51. return false;
  52. }
  53. void *label_info = label_info_->GetLabelInfo();
  54. rtError_t rt_ret = rtLabelSwitchByIndex(task_info_->cond(), task_info_->label_size(), label_info, stream_);
  55. if (rt_ret != RT_ERROR_NONE) {
  56. GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret);
  57. return false;
  58. }
  59. GELOGI("DistributeTask end.");
  60. return true;
  61. }
  62. bool LabelSwitchTask::CheckParamValid() {
  63. if (stream_ == nullptr) {
  64. GELOGE(PARAM_INVALID, "stream is null!");
  65. return false;
  66. }
  67. if (task_info_->label_list().empty()) {
  68. GELOGE(PARAM_INVALID, "label_list is empty.");
  69. return false;
  70. }
  71. if (task_info_->label_size() != task_info_->label_list().size()) {
  72. GELOGE(PARAM_INVALID, "label_list size %zu but label_size is %u.", task_info_->label_list().size(),
  73. task_info_->label_size());
  74. return false;
  75. }
  76. if (task_info_->label_size() >= UINT32_MAX / sizeof(rtLabelDevInfo)) {
  77. GELOGE(PARAM_INVALID, "label_size %u will overflow.", task_info_->label_size());
  78. return false;
  79. }
  80. if (label_info_ == nullptr) {
  81. GELOGE(PARAM_INVALID, "CopyLabelList failed, label info is null.");
  82. return false;
  83. }
  84. return true;
  85. }
  86. REGISTER_TASK(TaskInfoType::LABEL_SWITCH, LabelSwitchTask, LabelSwitchTaskInfo);
  87. } // namespace model_runner
  88. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示