You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model.h 34 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  17. #define GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_
  18. #include <map>
  19. #include <memory>
  20. #include <set>
  21. #include <string>
  22. #include <thread>
  23. #include <vector>
  24. #include "common/ge_types.h"
  25. #include "common/helper/model_helper.h"
  26. #include "common/helper/om_file_helper.h"
  27. #include "common/opskernel/ge_task_info.h"
  28. #include "common/properties_manager.h"
  29. #include "common/dump/opdebug_register.h"
  30. #include "common/types.h"
  31. #include "framework/common/util.h"
  32. #include "graph/debug/ge_attr_define.h"
  33. #include "graph/load/model_manager/aipp_utils.h"
  34. #include "graph/load/model_manager/data_dumper.h"
  35. #include "graph/load/model_manager/data_inputer.h"
  36. #include "graph/load/model_manager/model_utils.h"
  37. #include "graph/load/model_manager/zero_copy_offset.h"
  38. #include "graph/load/model_manager/zero_copy_task.h"
  39. #include "graph/model.h"
  40. #include "graph/node.h"
  41. #include "graph/op_desc.h"
  42. #include "graph/operator.h"
  43. #include "graph/utils/attr_utils.h"
  44. #include "graph/utils/tensor_utils.h"
  45. #include "mmpa/mmpa_api.h"
  46. #include "proto/task.pb.h"
  47. #include "task_info/task_info.h"
  48. #include "graph/common/local_context.h"
  49. using std::mutex;
  50. using std::thread;
  51. using std::multimap;
  52. namespace ge {
  53. // op debug need 2048 bits buffer
  54. const size_t kOpDebugMemorySize = 2048UL;
  55. const size_t kDebugP2pSize = 8UL;
  56. typedef enum tagModelProcStage {
  57. MODEL_LOAD_START = 1,
  58. MODEL_LOAD_END,
  59. MODEL_PRE_PROC_START,
  60. MODEL_PRE_PROC_END,
  61. MODEL_INFER_START,
  62. MODEL_INFER_END,
  63. MODEL_AFTER_PROC_START,
  64. MODEL_AFTER_PROC_END,
  65. MODEL_PROC_INVALID,
  66. } ModelProcStage;
  67. struct timeInfo {
  68. uint32_t modelId;
  69. int64_t processBeginTime;
  70. int64_t processEndTime;
  71. int64_t inferenceBeginTime;
  72. int64_t inferenceEndTime;
  73. int64_t dumpBeginTime;
  74. int64_t dumpEndTime;
  75. };
  76. // For super kernel
  77. struct SuperKernelTaskInfo {
  78. uint32_t last_block_dim;
  79. uint32_t last_args_size;
  80. uint32_t last_task_id;
  81. uint32_t last_stream_id;
  82. void *last_stream;
  83. void *last_sm_desc;
  84. vector<void *> kernel_list;
  85. vector<void *> arg_list;
  86. vector<uint32_t> dump_flag_list;
  87. vector<OpDescPtr> op_desc_list;
  88. vector<uintptr_t> dump_args_list;
  89. uint32_t last_dump_flag;
  90. int64_t last_group_key;
  91. uintptr_t last_dump_args;
  92. OpDescPtr last_op;
  93. };
  94. struct TaskMemInfo {
  95. int64_t input_size{0};
  96. int64_t output_size{0};
  97. int64_t weight_size{0};
  98. int64_t workspace_size{0};
  99. int64_t total_size{0};
  100. };
  101. struct ProfileInfo {
  102. FusionOpInfo fusion_info;
  103. TaskMemInfo memory_info;
  104. uint32_t task_count{0};
  105. };
  106. enum ExecuteMode {
  107. INITIALIZATION,
  108. SYNCHRONIZATION,
  109. ASYNCHRONIZATION,
  110. };
  111. // comments
  112. class DavinciModel {
  113. public:
  114. ///
  115. /// @ingroup ge
  116. /// @brief DavinciModel constructor
  117. /// @author
  118. ///
  119. DavinciModel(int32_t priority, const shared_ptr<ModelListener> &listener);
  120. ///
  121. /// @ingroup ge
  122. /// @brief DavinciModel desctructor, free Parse and Init resources
  123. /// @author
  124. ///
  125. ~DavinciModel();
  126. ///
  127. /// @ingroup ge
  128. /// @brief apply model to model_def_
  129. ///
  130. Status Assign(const GeModelPtr &ge_model);
  131. ///
  132. /// @ingroup ge
  133. /// @brief DavinciModel initialization, including Stream, ccHandle, Event, DataInputer, etc
  134. /// @return execute result
  135. /// @author
  136. ///
  137. Status Init(void *dev_ptr = nullptr, size_t memsize = 0, void *weight_ptr = nullptr, size_t weightsize = 0);
  138. ///
  139. /// @ingroup ge
  140. /// @brief ACL case, Load task list with queue.
  141. /// @param [in] input_que_ids: input queue ids from user, nums equal Data Op.
  142. /// @param [in] output_que_ids: input queue ids from user, nums equal NetOutput Op.
  143. /// @return: 0 for success / others for fail
  144. ///
  145. Status SetQueIds(const vector<uint32_t> &input_queue_ids, const vector<uint32_t> &output_queue_ids);
  146. ///
  147. /// @ingroup ge
  148. /// @brief Get DataInputer
  149. /// @return model ID
  150. ///
  151. uint32_t Id() const { return model_id_; }
  152. ///
  153. /// @ingroup ge
  154. /// @brief Get DataInputer
  155. /// @return model ID
  156. ///
  157. void SetId(uint32_t model_id) { model_id_ = model_id; }
  158. ///
  159. /// @ingroup ge
  160. /// @brief Get SubModelId
  161. /// @return sub model ID
  162. ///
  163. uint32_t SubModelId() const { return sub_model_id_; }
  164. ///
  165. /// @ingroup ge
  166. /// @brief Get SubModelId
  167. /// @return sub model ID
  168. ///
  169. void SetSubModelId(uint32_t sub_model_id) { sub_model_id_ = sub_model_id; }
  170. static void *Run(DavinciModel *model_pointer);
  171. ///
  172. /// @ingroup ge
  173. /// @brief NnExecute
  174. /// @param [in] stream execute stream
  175. /// @param [in] async_mode is asynchronize mode.
  176. /// @param [in] input_data model input data
  177. /// @param [out] output_data model output data
  178. ///
  179. Status NnExecute(rtStream_t stream, bool async_mode, const InputData &input_data, OutputData &output_data);
  180. ///
  181. /// @ingroup ge
  182. /// @brief lock mutex run flag
  183. /// @author
  184. ///
  185. void LockRunFlg() { mux_run_flg_.lock(); }
  186. ///
  187. /// @ingroup ge
  188. /// @brief unlock mutex run flag
  189. /// @author
  190. ///
  191. void UnlockRunFlg() { mux_run_flg_.unlock(); }
  192. ///
  193. /// @ingroup ge
  194. /// @brief get DataInputer
  195. /// @return DataInputer pointer
  196. ///
  197. DataInputer *const GetDataInputer() const { return data_inputer_; }
  198. uint32_t GetDataInputerSize() {
  199. GE_CHECK_NOTNULL(data_inputer_);
  200. return data_inputer_->Size();
  201. }
  202. // get Stream number
  203. uint32_t StreamNum() const { return runtime_param_.stream_num; }
  204. // get Event number
  205. uint32_t EventNum() const { return runtime_param_.event_num; }
  206. // get Lable number
  207. uint32_t LabelNum() const { return runtime_param_.label_num; }
  208. // get batch number
  209. uint32_t BatchNum() const { return runtime_param_.batch_num; }
  210. // get session id
  211. uint64_t SessionId() const { return runtime_param_.session_id; }
  212. // get model priority
  213. int32_t Priority() const { return priority_; }
  214. // get total mem size
  215. size_t TotalMemSize() const { return runtime_param_.mem_size; }
  216. const map<uint32_t, MemInfo> &P2PMemInfos() const { return runtime_param_.memory_infos; }
  217. // model name
  218. string Name() const { return name_; }
  219. // om_name
  220. const string &OmName() const { return om_name_; }
  221. // dump_model_name
  222. const string &DumpModelName() const { return dump_model_name_; }
  223. // version
  224. uint32_t Version() const { return version_; }
  225. // get total weights mem size
  226. size_t TotalWeightsMemSize() const { return runtime_param_.weight_size; }
  227. size_t TotalVarMemSize() const { return runtime_param_.var_size; }
  228. // get base memory address
  229. uint8_t *MemBase() { return mem_base_; }
  230. // get weight base memory address
  231. uint8_t *WeightsMemBase() { return weights_mem_base_; }
  232. uint8_t *VarMemBase() { return var_mem_base_; }
  233. // get Event list
  234. const vector<rtEvent_t> &GetEventList() const { return event_list_; }
  235. const vector<rtStream_t> &GetStreamList() const { return stream_list_; }
  236. const vector<rtLabel_t> &GetLabelList() const { return label_list_; }
  237. Status GetLabelGotoAddr(uint32_t label_index, rtMemType_t memory_type, void *&addr, uint32_t &size);
  238. Status DestroyThread();
  239. // get Op
  240. OpDescPtr GetOpByIndex(uint32_t index) const {
  241. if (op_list_.find(index) == op_list_.end()) {
  242. return nullptr;
  243. }
  244. return op_list_.at(index);
  245. }
  246. void *GetGlobalStep() const { return global_step_addr_; }
  247. // get task info for profiling
  248. const vector<TaskDescInfo> &GetTaskDescInfo() const { return task_desc_info_; }
  249. // get updated task info list
  250. vector<TaskInfoPtr> GetTaskList() { return task_list_; }
  251. // Modified from KernelTaskInfo.
  252. SuperKernelTaskInfo &GetSuperKernelTaskInfo() { return skt_info_; }
  253. rtModel_t GetRtModelHandle() const { return rt_model_handle_; }
  254. rtStream_t GetRtModelStream() const { return rt_model_stream_; }
  255. uint64_t GetRtBaseAddr() const { return runtime_param_.logic_mem_base; }
  256. uint64_t GetRtWeightAddr() const { return runtime_param_.logic_weight_base; }
  257. uint64_t GetRtVarAddr() const { return runtime_param_.logic_var_base; }
  258. uint32_t GetFlowctrlIndex(uint32_t op_index);
  259. void PushHcclStream(rtStream_t value);
  260. bool IsBroadCastOpData(const NodePtr &var_node);
  261. ///
  262. /// @ingroup ge
  263. /// @brief For TVM Op, avoid Addr Reuse.
  264. /// @return void*
  265. ///
  266. const char *GetRegisterStub(const string &tvm_binfile_key, const string &session_graph_model_id = "");
  267. ///
  268. /// @ingroup ge
  269. /// @brief get model input and output desc info
  270. /// @param [out] input_shape model input size
  271. /// @param [out] output_shape model output size
  272. /// @return execute result
  273. ///
  274. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc);
  275. Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc,
  276. vector<uint32_t> &input_formats, vector<uint32_t> &output_formats, bool by_dims);
  277. ///
  278. /// @ingroup ge
  279. /// @brief Get dynamic batch_info
  280. /// @param [out] batch_info
  281. /// @param [out] dynamic_type
  282. /// @return execute result
  283. ///
  284. Status GetDynamicBatchInfo(vector<vector<int64_t>> &batch_info, int32_t &dynamic_type) const;
  285. ///
  286. /// @ingroup ge
  287. /// @brief Get combined dynamic dims info
  288. /// @param [out] batch_info
  289. /// @return None
  290. ///
  291. void GetCombinedDynamicDims(vector<vector<int64_t>> &batch_info) const;
  292. void GetUserDesignateShapeOrder(vector<string> &user_input_shape_order) const;
  293. void GetCurShape(vector<int64_t> &batch_info, int32_t &dynamic_type) const;
  294. void GetModelAttr(vector<string> &dynamic_output_shape_info) const;
  295. ///
  296. /// @ingroup ge
  297. /// @brief Get AIPP input info
  298. /// @param [in] index
  299. /// @param [out] aipp_info
  300. /// @return execute result
  301. ///
  302. Status GetAippInfo(uint32_t index, AippConfigInfo &aipp_info) const;
  303. Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index) const;
  304. ///
  305. /// @ingroup ge
  306. /// @brief Get model_id.
  307. /// @return model_id
  308. ///
  309. uint32_t GetModelId() const { return model_id_; }
  310. ///
  311. /// @ingroup ge
  312. /// @brief get unique identification for op when load two or more models
  313. /// @param [in] op_desc : current op.
  314. /// @param [in] string identification: unique identification for current op.
  315. /// @return None
  316. ///
  317. void GetUniqueId(const OpDescPtr &op_desc, string &unique_identification);
  318. Status ReturnResult(uint32_t data_id, const bool rslt_flg, const bool seq_end_flg, OutputData *output_data);
  319. Status ReturnNoOutput(uint32_t data_id);
  320. Status ModelRunStart();
  321. ///
  322. /// @ingroup ge
  323. /// @brief stop run model
  324. /// @return Status
  325. ///
  326. Status ModelRunStop();
  327. ///
  328. /// @ingroup ge
  329. /// @brief model run flag
  330. /// @return Status
  331. ///
  332. bool RunFlag() const { return run_flg_; }
  333. ///
  334. /// @ingroup ge
  335. /// @brief Set Session Id
  336. /// @return void
  337. ///
  338. void SetSessionId(uint64_t session_id) { session_id_ = session_id; }
  339. ///
  340. /// @ingroup ge
  341. /// @brief Get Session Id
  342. /// @return sessionID
  343. ///
  344. uint64_t GetSessionId() const { return session_id_; }
  345. const struct ErrorMessage::Context &GetErrorContext() const { return error_context_; }
  346. ///
  347. /// @ingroup ge
  348. /// @brief SetDeviceId
  349. /// @return void
  350. ///
  351. void SetDeviceId(uint32_t device_id) { device_id_ = device_id; }
  352. ///
  353. /// @ingroup ge
  354. /// @brief Get device Id
  355. /// @return device id
  356. ///
  357. uint32_t GetDeviceId() const { return device_id_; }
  358. bool NeedDestroyAicpuKernel() const { return need_destroy_aicpu_kernel_; }
  359. Status UpdateSessionId(uint64_t session_id);
  360. const RuntimeParam &GetRuntimeParam() { return runtime_param_; }
  361. int32_t GetDataInputTid() const { return dataInputTid; }
  362. void SetDataInputTid(int32_t data_input_tid) { dataInputTid = data_input_tid; }
  363. void DisableZeroCopy(const void *addr);
  364. bool GetOpDugReg() const { return is_op_debug_reg_; }
  365. ///
  366. /// @ingroup ge
  367. /// @brief Save outside address of Data or NetOutput used info for ZeroCopy.
  368. /// @param [in] const OpDescPtr &op_desc: current op desc
  369. /// @param [in] const vector<void *> &outside_addrs: address of task
  370. /// @param [in] const void *args_offset: arguments address save the address.
  371. /// @return None.
  372. ///
  373. void SetZeroCopyAddr(const OpDescPtr &op_desc, const vector<void *> &outside_addrs, const void *info, void *args,
  374. size_t size, size_t offset);
  375. void SetDynamicSize(const vector<uint64_t> &batch_num, int32_t dynamic_type);
  376. bool GetL1FusionEnableOption() { return is_l1_fusion_enable_; }
  377. void SetProfileTime(ModelProcStage stage, int64_t endTime = 0);
  378. int64_t GetLoadBeginTime() { return load_begin_time_; }
  379. int64_t GetLoadEndTime() { return load_end_time_; }
  380. Status ReportProfilingData();
  381. void SaveDumpOpInfo(const RuntimeParam &model_param, const OpDescPtr &op, uint32_t task_id, uint32_t stream_id) {
  382. data_dumper_.SaveDumpOpInfo(model_param, op, task_id, stream_id);
  383. }
  384. void SaveDumpTask(uint32_t task_id, uint32_t stream_id, const shared_ptr<OpDesc> &op_desc, uintptr_t args) {
  385. data_dumper_.SaveDumpTask(task_id, stream_id, op_desc, args);
  386. }
  387. void SetKnownShapeGlobalStep(void *global_step) {
  388. known_shape_global_step_ = global_step;
  389. }
  390. void DumperShrink() {
  391. data_dumper_.DumpShrink();
  392. }
  393. bool OpNeedDump(const string &op_name) {
  394. return GetDumpProperties().IsLayerNeedDump(dump_model_name_, om_name_, op_name);
  395. }
  396. bool ModelNeedDump();
  397. void SetEndGraphId(uint32_t task_id, uint32_t stream_id);
  398. DavinciModel &operator=(const DavinciModel &model) = delete;
  399. DavinciModel(const DavinciModel &model) = delete;
  400. const map<int64_t, vector<rtStream_t>> &GetHcclFolowStream() {
  401. return main_follow_stream_mapping_;
  402. }
  403. void SaveHcclFollowStream(int64_t main_stream_id, rtStream_t stream);
  404. void InitRuntimeParams();
  405. Status InitVariableMem();
  406. void UpdateMemBase(uint8_t *mem_base) {
  407. runtime_param_.mem_base = mem_base;
  408. mem_base_ = mem_base;
  409. }
  410. void SetTotalArgsSize(uint32_t args_size) { total_args_size_ += args_size; }
  411. uint32_t GetTotalArgsSize() { return total_args_size_; }
  412. void *GetCurrentArgsAddr(uint32_t offset) {
  413. void *cur_args = static_cast<char *>(args_) + offset;
  414. return cur_args;
  415. }
  416. void SetTotalIOAddrs(const vector<void *> &io_addrs);
  417. void SetHybridArgsSize(uint32_t args_size) { total_hybrid_args_size_ += args_size; }
  418. uint32_t GetHybridArgsSize() {
  419. return total_hybrid_args_size_;
  420. }
  421. void *GetCurrentHybridArgsAddr(uint32_t offset) {
  422. void *cur_args = static_cast<char *>(hybrid_addrs_) + offset;
  423. return cur_args;
  424. }
  425. void SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_size);
  426. int64_t GetFixedAddrsSize(string tensor_name);
  427. void *GetCurrentFixedAddr(int64_t offset) const {
  428. void *cur_addr = static_cast<char *>(fixed_addrs_) + offset;
  429. return cur_addr;
  430. }
  431. uint32_t GetFixedAddrOutputIndex(string tensor_name) {
  432. if (tensor_name_to_peer_output_index_.find(tensor_name) != tensor_name_to_peer_output_index_.end()) {
  433. return tensor_name_to_peer_output_index_[tensor_name];
  434. }
  435. return UINT32_MAX;
  436. }
  437. void SetKnownNode(bool known_node) { known_node_ = known_node; }
  438. bool IsKnownNode() { return known_node_; }
  439. Status CheckCapability(rtFeatureType_t featureType, int32_t featureInfo, bool &is_support) const;
  440. Status MallocKnownArgs();
  441. Status UpdateKnownNodeArgs(const vector<void *> &inputs, const vector<void *> &outputs);
  442. Status CreateKnownZeroCopyMap(const vector<void *> &inputs, const vector<void *> &outputs);
  443. Status UpdateKnownZeroCopyAddr(vector<void *> &total_io_addrs, bool update_args = true);
  444. Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) const;
  445. Status GetAllAippInputOutputDims(uint32_t index, vector<InputOutputDims> &input_dims,
  446. vector<InputOutputDims> &output_dims) const;
  447. // om file name
  448. void SetOmName(const string &om_name) { om_name_ = om_name; }
  449. void SetDumpModelName(const string &dump_model_name) { dump_model_name_ = dump_model_name; }
  450. void SetDumpProperties(const DumpProperties &dump_properties) { data_dumper_.SetDumpProperties(dump_properties); }
  451. const DumpProperties &GetDumpProperties() const { return data_dumper_.GetDumpProperties(); }
  452. bool GetOpDescInfo(uint32_t stream_id, uint32_t task_id, OpDescInfo &op_desc_info) const {
  453. return data_dumper_.GetOpDescInfo(stream_id, task_id, op_desc_info);
  454. }
  455. bool GetRunningFlag() const { return running_flg_; }
  456. void SetRunningFlag(bool flag) { running_flg_ = flag; }
  457. Status SetRunAsyncListenerCallback(const RunAsyncCallback &callback);
  458. private:
  459. // memory address of weights
  460. uint8_t *weights_mem_base_;
  461. uint8_t *var_mem_base_;
  462. // memory address of model
  463. uintptr_t fixed_mem_base_; // Initial of mem_base_, keep forever.
  464. uint8_t *mem_base_;
  465. uint8_t *p2p_mem_base_;
  466. bool is_inner_mem_base_;
  467. bool is_inner_weight_base_;
  468. bool is_inner_p2p_mem_base_;
  469. // input data manager
  470. DataInputer *data_inputer_;
  471. int64_t load_begin_time_;
  472. int64_t load_end_time_;
  473. struct timeInfo time_info_;
  474. int32_t dataInputTid;
  475. void *GetRunAddress(void *addr) const;
  476. ///
  477. /// @ingroup ge
  478. /// @brief Copy Check input size and model op size.
  479. /// @param [in] const int64_t &input_size: input size.
  480. /// @param [in] const int64_t &op_size: model op size.
  481. /// @param [in] is_dynamic: dynamic batch input flag.
  482. /// @return true if success
  483. ///
  484. bool CheckInputAndModelSize(const int64_t &input_size, const int64_t &op_size, bool is_dynamic);
  485. ///
  486. /// @ingroup ge
  487. /// @brief Set copy only for No task feed NetOutput address.
  488. /// @return None.
  489. ///
  490. void SetCopyOnlyOutput();
  491. ///
  492. /// @ingroup ge
  493. /// @brief Copy Input/Output to model for direct use.
  494. /// @param [in] const InputData &input_data: user input data info.
  495. /// @param [in/out] OutputData &output_data: user output data info.
  496. /// @param [in] bool is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  497. /// @return SUCCESS handle successfully / others handle failed
  498. ///
  499. Status CopyModelData(const InputData &input_data, OutputData &output_data, bool is_dynamic);
  500. ///
  501. /// @ingroup ge
  502. /// @brief Copy Data addr to model for direct use.
  503. /// @param [in] data_info: model memory addr/size map { data_index, { tensor_size, tensor_addr } }.
  504. /// @param [in] is_input: input data or output data
  505. /// @param [in] blobs: user input/output data list.
  506. /// @param [in] is_dynamic: whether is dynamic input, true: is dynamic input; false: not is dynamic input
  507. /// @param [in] batch_label: batch label for multi-batch scenes
  508. /// @return SUCCESS handle successfully / others handle failed
  509. ///
  510. Status UpdateIoTaskArgs(const map<uint32_t, ZeroCopyOffset> &data_info, bool is_input,
  511. const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label);
  512. Status CopyInputData(const InputData &input_data, bool device_data = false);
  513. Status CopyOutputData(uint32_t data_id, OutputData &output_data, rtMemcpyKind_t kind);
  514. Status SyncVarData();
  515. Status InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weight_size);
  516. Status InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size);
  517. void CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, ShapeDescription &shape1, ShapeDescription &shape2);
  518. void SetInputDimsInfo(const vector<int64_t> &input_dims, Format &format, ShapeDescription &shape_info);
  519. Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<uint32_t> &input_formats, bool by_dims) const;
  520. Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, vector<uint32_t> &output_formats) const;
  521. Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo);
  522. void UnbindHcomStream();
  523. Status DistributeTask();
  524. void SaveProfilingTaskDescInfo(const OpDescPtr &op, const TaskInfoPtr &task,
  525. const domi::TaskDef &task_def, size_t task_index);
  526. uint8_t *MallocFeatureMapMem(size_t data_size);
  527. uint8_t *MallocWeightsMem(size_t weights_size);
  528. uint8_t *MallocP2PMem(size_t p2p_data_size);
  529. void FreeFeatureMapMem();
  530. void FreeWeightsMem();
  531. void FreeP2PMem();
  532. void ReleaseTask();
  533. void ClearTaskAddrs();
  534. void UnbindTaskSinkStream();
  535. bool IsAicpuKernelConnectSpecifiedLayer();
  536. ///
  537. /// @ingroup ge
  538. /// @brief Reduce memory usage after task sink.
  539. /// @return: void
  540. ///
  541. void Shrink();
  542. ///
  543. /// @ingroup ge
  544. /// @brief Travel all nodes and do some init.
  545. /// @param [in] compute_graph: ComputeGraph to load.
  546. /// @return Status
  547. ///
  548. Status InitNodes(const ComputeGraphPtr &compute_graph);
  549. ///
  550. /// @ingroup ge
  551. /// @brief Data Op Initialize.
  552. /// @param [in] ComputeGraphPtr: root graph of the model.
  553. /// @param [in] NodePtr: Data Op.
  554. /// @param [in/out] data_op_index: index of courrent count.
  555. /// @param [in/out] data_by_index: Data ordered by index.
  556. /// @return Status
  557. ///
  558. Status InitDataOp(const ComputeGraphPtr &graph, const NodePtr &node, uint32_t &data_op_index,
  559. map<uint32_t, OpDescPtr> &data_by_index, set<const void *> &input_outside_addrs);
  560. ///
  561. /// @ingroup ge
  562. /// @brief Sort Data op list by index.
  563. /// @param [in] data_by_index: map of Data Op.
  564. /// @param [in] output_op_list: list of NetOutput op.
  565. /// @return Status
  566. ///
  567. Status GenInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, const vector<OpDescPtr> &output_op_list);
  568. ///
  569. /// @ingroup ge
  570. /// @brief NetOutput Op Initialize.
  571. /// @param [in] ComputeGraphPtr: root graph of the model.
  572. /// @param [in] NodePtr: NetOutput Op.
  573. /// @param [in/out] vector<OpDescPtr>: All NetOutput node in model.
  574. /// @return Status
  575. ///
  576. Status InitNetOutput(const ComputeGraphPtr &graph, const NodePtr &node, vector<OpDescPtr> &output_op_list,
  577. set<const void *> &output_outside_addrs);
  578. ///
  579. /// @ingroup ge
  580. /// @brief Constant Op Init.
  581. /// @return Status
  582. ///
  583. Status InitConstant(const OpDescPtr &op_desc);
  584. Status InitVariable(const OpDescPtr &op_desc, map<string, OpDescPtr> &variable_by_name);
  585. /// @ingroup ge
  586. /// @brief LabelSet Op Initialize.
  587. /// @param [in] op_desc: LabelSet Op descriptor.
  588. /// @return Status
  589. Status InitLabelSet(const OpDescPtr &op_desc);
  590. Status InitStreamSwitch(const OpDescPtr &op_desc);
  591. Status InitStreamActive(const OpDescPtr &op_desc);
  592. Status InitStreamSwitchN(const OpDescPtr &op_desc);
  593. ///
  594. /// @ingroup ge
  595. /// @brief Case Op Init.
  596. /// @return Status
  597. ///
  598. Status InitCase(const OpDescPtr &op_desc);
  599. Status SetDynamicBatchInfo(const OpDescPtr &op_desc, uint32_t batch_num);
  600. ///
  601. /// @ingroup ge
  602. /// @brief TVM Op Init.
  603. /// @return Status
  604. ///
  605. Status InitTbeHandle(const OpDescPtr &op_desc);
  606. void StoreTbeHandle(const string &handle_key);
  607. void CleanTbeHandle();
  608. ///
  609. /// @ingroup ge
  610. /// @brief Make active stream list and bind to model.
  611. /// @return: 0 for success / others for fail
  612. ///
  613. Status BindModelStream();
  614. ///
  615. /// @ingroup ge
  616. /// @brief Init model stream for NN model.
  617. /// @return Status
  618. ///
  619. Status InitModelStream(rtStream_t stream);
  620. ///
  621. /// @ingroup ge
  622. /// @brief ACL, Load task list with queue entrance.
  623. /// @return: 0 for success / others for fail
  624. ///
  625. Status LoadWithQueue();
  626. ///
  627. /// @ingroup ge
  628. /// @brief ACL, Bind Data Op addr to input queue.
  629. /// @return: 0 for success / others for fail
  630. ///
  631. Status BindInputQueue();
  632. Status CpuTaskModelZeroCopy(vector<uintptr_t> &mbuf_list, const map<uint32_t, ZeroCopyOffset> &outside_addrs);
  633. ///
  634. /// @ingroup ge
  635. /// @brief ACL, Bind NetOutput Op addr to output queue.
  636. /// @return: 0 for success / others for fail
  637. ///
  638. Status BindOutputQueue();
  639. Status CpuModelPrepareOutput(uintptr_t addr, uint32_t size);
  640. ///
  641. /// @ingroup ge
  642. /// @brief definiteness queue schedule, bind input queue to task.
  643. /// @param [in] queue_id: input queue id from user.
  644. /// @param [in] addr: Data Op output tensor address.
  645. /// @param [in] size: Data Op output tensor size.
  646. /// @return: 0 for success / others for fail
  647. ///
  648. Status CpuModelDequeue(uint32_t queue_id);
  649. ///
  650. /// @ingroup ge
  651. /// @brief definiteness queue schedule, bind output queue to task.
  652. /// @param [in] queue_id: output queue id from user.
  653. /// @param [in] addr: NetOutput Op input tensor address.
  654. /// @param [in] size: NetOutput Op input tensor size.
  655. /// @return: 0 for success / others for fail
  656. ///
  657. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t addr, uint32_t size);
  658. ///
  659. /// @ingroup ge
  660. /// @brief definiteness queue schedule, active original model stream.
  661. /// @return: 0 for success / others for fail
  662. ///
  663. Status CpuActiveStream();
  664. ///
  665. /// @ingroup ge
  666. /// @brief definiteness queue schedule, wait for end graph.
  667. /// @return: 0 for success / others for fail
  668. ///
  669. Status CpuWaitEndGraph();
  670. Status BindEnqueue();
  671. Status CpuModelEnqueue(uint32_t queue_id, uintptr_t out_mbuf);
  672. ///
  673. /// @ingroup ge
  674. /// @brief definiteness queue schedule, repeat run model.
  675. /// @return: 0 for success / others for fail
  676. ///
  677. Status CpuModelRepeat();
  678. Status InitEntryTask();
  679. Status AddHeadStream();
  680. ///
  681. /// @ingroup ge
  682. /// @brief set ts device.
  683. /// @return: 0 for success / others for fail
  684. ///
  685. Status SetTSDevice();
  686. Status OpDebugRegister();
  687. void OpDebugUnRegister();
  688. void CheckHasHcomOp(const ComputeGraphPtr &graph);
  689. Status DoTaskSink();
  690. void CreateOutput(uint32_t index, const OpDescPtr &op_desc, InputOutputDescInfo &output, uint32_t &format_result);
  691. Status TransAllVarData(ComputeGraphPtr &graph, uint32_t graph_id);
  692. void SetDataDumperArgs(const ComputeGraphPtr &graph, const map<string, OpDescPtr> &variable_by_name);
  693. Status InitL1DataDumperArgs();
  694. Status InitModelProfile();
  695. Status SinkModelProfile();
  696. Status SinkTimeProfile(const InputData &current_data);
  697. Status InitOutputTensorInfo(const OpDescPtr &op_desc);
  698. Status GenOutputTensorInfo(OutputData *output_data, vector<OutputTensorInfo> &outputs);
  699. Status InitInputDescInfo(const OpDescPtr &op_desc);
  700. Status InitOutputDescInfo(const OpDescPtr &op_desc, const vector<string> &out_node_name);
  701. Status InitOrigInputInfo(uint32_t index, const OpDescPtr &op_desc);
  702. Status InitAippInfo(uint32_t index, const OpDescPtr &op_desc);
  703. Status InitAippType(uint32_t index, const OpDescPtr &op_desc, const map<uint32_t, OpDescPtr> &data_list);
  704. Status InitAippInputOutputDims(uint32_t index, const OpDescPtr &op_desc);
  705. void ParseAIPPInfo(string in_out_info, InputOutputDims &dims_info);
  706. void SetLabelForDynamic(const NodePtr &node);
  707. void ParseDynamicOutShape(const vector<string> &str_info, vector<vector<int64_t>> &vec_info);
  708. bool IsGetNextSinkDynamic(const OpDescPtr &op_desc);
  709. Status InitRealSizeAndShapeInfo(const ComputeGraphPtr &compute_graph, const NodePtr &node);
  710. void GetAllGearsInfo(const NodePtr &node);
  711. Status GetGetDynamicDimsNodeInfo(const NodePtr &node);
  712. Status GetGearAndRealOutSizeInfo(const ComputeGraphPtr &graph, const NodePtr &node);
  713. Status GetRealOutputSizeOfCase(const ComputeGraphPtr &graph, size_t input_index, const NodePtr &case_node);
  714. Status GetGearAndRealOutShapeInfo(const ComputeGraphPtr &graph, const NodePtr &node);
  715. bool is_weight_mem_has_inited_;
  716. bool is_feature_map_mem_has_inited_;
  717. uint32_t model_id_;
  718. uint32_t runtime_model_id_;
  719. uint32_t sub_model_id_ = 0;
  720. string name_;
  721. // used for inference data dump
  722. string om_name_;
  723. string dump_model_name_;
  724. uint32_t version_;
  725. GeModelPtr ge_model_; // release after DavinciModel::Init
  726. bool need_destroy_aicpu_kernel_{false};
  727. map<uint32_t, OpDescPtr> op_list_; // release after DavinciModel::Init
  728. map<string, GeTensorDesc> broadcast_variable_;
  729. void *global_step_addr_{nullptr};
  730. uint64_t global_step_size_{0};
  731. map<uint32_t, ZeroCopyOffset> input_data_info_;
  732. map<uint32_t, ZeroCopyOffset> output_data_info_;
  733. set<const void *> real_virtual_addrs_;
  734. // output op: save cce op actual needed memory size
  735. vector<int64_t> output_memory_size_list_;
  736. thread thread_id_;
  737. shared_ptr<ModelListener> listener_;
  738. bool run_flg_;
  739. // check whether model is running with data
  740. bool running_flg_ = false;
  741. mutex mux_run_flg_;
  742. int32_t priority_;
  743. vector<rtStream_t> stream_list_;
  744. mutex all_hccl_stream_list_mutex_;
  745. vector<rtStream_t> all_hccl_stream_list_;
  746. // for reuse hccl_follow_stream
  747. mutex capacity_of_stream_mutex_;
  748. map<int64_t, vector<rtStream_t>> main_follow_stream_mapping_;
  749. vector<rtEvent_t> event_list_;
  750. vector<rtLabel_t> label_list_;
  751. set<uint32_t> label_id_indication_;
  752. mutex label_args_mutex_;
  753. map<uint32_t, pair<void *, uint32_t>> label_goto_args_;
  754. mutex outside_addrs_mutex_;
  755. vector<ZeroCopyTask> zero_copy_tasks_; // Task used Data or NetOutput addr.
  756. set<const void *> copy_only_addrs_; // Address need copy to original place.
  757. vector<TaskInfoPtr> task_list_;
  758. // rt_moodel_handle
  759. rtModel_t rt_model_handle_;
  760. rtStream_t rt_model_stream_;
  761. bool is_inner_model_stream_;
  762. bool is_async_mode_; // For NN execute, Async mode use rtMemcpyAsync on rt_model_stream_.
  763. ExecuteMode last_execute_mode_;
  764. bool is_stream_list_bind_{false};
  765. bool is_pure_head_stream_{false};
  766. rtStream_t rt_head_stream_{nullptr};
  767. rtStream_t rt_entry_stream_{nullptr};
  768. rtAicpuDeployType_t deploy_type_{AICPU_DEPLOY_RESERVED};
  769. // ACL queue schedule, save queue ids for Init.
  770. vector<TaskInfoPtr> cpu_task_list_;
  771. vector<uint32_t> input_queue_ids_; // input queue ids created by caller.
  772. vector<uint32_t> output_queue_ids_; // output queue ids created by caller.
  773. vector<uintptr_t> input_mbuf_list_; // input mbuf created by dequeue task.
  774. vector<uintptr_t> output_mbuf_list_; // output mbuf created by dequeue task.
  775. uint64_t session_id_;
  776. struct ErrorMessage::Context error_context_;
  777. uint32_t device_id_;
  778. mutex flowctrl_op_index_internal_map_mutex_;
  779. map<uint32_t, uint32_t> flowctrl_op_index_internal_map_;
  780. vector<rtStream_t> active_stream_list_;
  781. set<uint32_t> active_stream_indication_;
  782. set<uint32_t> hcom_streams_;
  783. RuntimeParam runtime_param_;
  784. static mutex tvm_bin_mutex_;
  785. set<string> tvm_bin_kernel_;
  786. map<string, uint32_t> used_tbe_handle_map_;
  787. // for profiling task and graph info
  788. vector<TaskDescInfo> task_desc_info_;
  789. std::map<std::string, std::pair<uint32_t, uint32_t>> profiler_report_op_info_;
  790. int64_t maxDumpOpNum_;
  791. // for data dump
  792. DataDumper data_dumper_;
  793. OpdebugRegister opdebug_register_;
  794. uint64_t iterator_count_;
  795. bool is_l1_fusion_enable_;
  796. map<OpDescPtr, void *> saved_task_addrs_; // release after DavinciModel::Init
  797. void *l1_fusion_addr_ = nullptr;
  798. bool known_node_ = false;
  799. uint32_t total_args_size_ = 0;
  800. void *args_ = nullptr;
  801. void *args_host_ = nullptr;
  802. void *fixed_addrs_ = nullptr;
  803. void *hybrid_addrs_ = nullptr;
  804. uint32_t total_hybrid_args_size_ = 0;
  805. int64_t total_fixed_addr_size_ = 0;
  806. map<const void *, void *> known_input_data_info_;
  807. map<const void *, void *> known_output_data_info_;
  808. vector<void *> total_io_addrs_;
  809. vector<vector<int64_t>> batch_info_;
  810. vector<vector<int64_t>> combined_batch_info_;
  811. vector<string> user_designate_shape_order_;
  812. int32_t dynamic_type_ = 0;
  813. bool is_dynamic_ = false;
  814. vector<uint64_t> batch_size_;
  815. // key: input tensor name, generally rts op;
  816. // value: the fixed addr of input anchor, same as the peer output anchor addr of the peer op
  817. map<string, int64_t> tensor_name_to_fixed_addr_size_;
  818. // key: input tensor name, generally rts op; value: the peer output anchor of the peer op
  819. map<string, int64_t> tensor_name_to_peer_output_index_;
  820. // if model is first execute
  821. bool is_first_execute_;
  822. // for op debug
  823. mutex debug_reg_mutex_;
  824. bool is_op_debug_reg_ = false;
  825. bool is_online_infer_dynamic_ = false;
  826. bool is_getnext_sink_dynamic_ = false;
  827. vector<int32_t> cur_dynamic_dims_;
  828. void *netoutput_last_input_addr_ = nullptr;
  829. int64_t netoutput_last_input_size_ = 0;
  830. size_t shape_of_cur_dynamic_dims_ = 0;
  831. // key: input_index: input is merge node; value: each gear info and each output size
  832. map<size_t, map<vector<int32_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_;
  833. // key: input_index: input is merge node; value: each gear info and each output shape
  834. map<size_t, map<vector<int32_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_;
  835. vector<vector<int32_t>> all_gears_info_;
  836. multimap<uint32_t, uint32_t> op_id_map_;
  837. vector<ProfileInfo> profile_list_;
  838. // For super kernel.
  839. SuperKernelTaskInfo skt_info_;
  840. bool has_output_node_ = false;
  841. bool is_dynamic_aipp_ = false;
  842. vector<string> dynamic_output_shape_info_;
  843. vector<vector<void *>> input_addrs_list_;
  844. vector<vector<void *>> output_addrs_list_;
  845. vector<int64_t> output_buffer_size_;
  846. vector<GeShape> output_shape_info_;
  847. map<uint32_t, OriginInputInfo> orig_input_info_;
  848. map<uint32_t, AippConfigInfo> aipp_info_list_;
  849. map<uint32_t, pair<InputAippType, size_t>> aipp_type_list_;
  850. map<uint32_t, pair<vector<InputOutputDims>, vector<InputOutputDims>>> aipp_dims_info_;
  851. vector<InputOutputDescInfo> input_descs_;
  852. vector<InputOutputDescInfo> input_descs_dims_;
  853. vector<uint32_t> input_formats_;
  854. vector<InputOutputDescInfo> output_descs_;
  855. vector<uint32_t> output_formats_;
  856. // known shape node for dump
  857. void *known_shape_global_step_;
  858. };
  859. } // namespace ge
  860. #endif // GE_GRAPH_LOAD_NEW_MODEL_MANAGER_DAVINCI_MODEL_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示